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1 Lagrange multipliers

1.1 Classical Lagrange multiplier technique
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Figure 1: Classical and localized Lagrange multipliers.

The continuity of the displacement field across sub-
domain boundaries is enforced by imposing linear con-
straints, the equality of the dofs of corresponding nodes
in adjacent sub-domains. Typically, this is achieved by
using the classical Lagrange multiplier technique, which
is illustrated in a conceptual manner in fig. 1. Let the
displacement vectors at two nodes belonging to two ad-
jacent sub-domains be denoted u1 and u2. The continu-
ity of the displacement field across the interface of the
two sub-domains implies C = u1 − u2 = 0, where C is
the constraint to be imposed. In the classical Lagrange
multiplier technique, the constraint is imposed via the
addition of a constraint potential, Vc = λTC, where λ is
the array of Lagrange multipliers used to enforce the constraint.

1.2 Localized Lagrange multiplier technique

An alternative approach is to define an independent interface node, denoted c, then impose two kinematic constraints:
the displacement components at the boundary nodes in the two sub-domains adjacent to the interface must equal
those at the independent interface nodes. For the simple connection illustrated in fig. 1, the two kinematic constraints
become C[1] = u1−c = 0 and C[2] = u2−c = 0, and the corresponding constraint potential is Vc = λ[1]TC[1]+λ[2]TC[2].

1.3 The localized Lagrange multiplier element

As discussed in section 1.2, the kinematic continuity conditions between sub-domain interfaces is enforced via the
localized Lagrange multiplier technique. Let ub and c denote the arrays of dofs at a boundary node and at an interface
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node, respectively. A typical kinematic constraint is written as C = ub − c = 0 and the associated potential is

Vc = sλT C +
p

2
CTC, (1)

where λ is the array of Lagrange multipliers used to enforce the constraint, and s the scaling factor for those multipliers.
The second term of the potential is a penalty term and p is the penalty coefficient. The potential defined by eq. (1)
combines the traditional Lagrange multiplier technique with the penalty method. This combination is known as
the augmented Lagrangian formulation and has been studied extensively [1, 2]. It is an effective approach for the
enforcement of kinematic constraints in multibody dynamics, as proposed by Bayo et al. [3, 4]. Furthermore, scaling
of the Lagrange multipliers and the addition of the penalty terms was shown help the solution of differential algebraic
equations [5, 6].
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Figure 2: The localized Lagrange
multiplier element.

A localized Lagrange multiplier element is depicted in fig. 2. It involves three
vertices: the first vertex carries the dofs of the boundary node, ub, the second
those of the interface node, c, and the last those of the Lagrange multiplier. A
variation of the potential defined by eq. (1) is obtained easily,

δVc = δuT
b [sλ+ pC] + δλT [sC] + δcT [−sλ− pC] , (2)

and gives rise to the following generalized forces of constraint of the localized
Lagrange multiplier element,

f =







sλ+ pC
sC

−sλ− pC







. (3)

Taking a derivative of these forces of constraint with respect to the dofs of the problem yields the stiffness matrix of
the localized Lagrange multiplier element,

k =





pI sI −pI

sI 0 −sI

−pI −sI pI



 , (4)

where I denotes the identity matrix of size d × d. For beam problems, d = 6, because each node has six dofs, three
displacements and three rotations.

As mentioned in section 1.2, the Lagrange multipliers become local in the proposed formulation, i.e., Lagrange
multipliers are associated with a single sub-domain. The potential of kinematic constraint involves two types of dofs,
the sub-domain dofs, ub and λ, and the interface dofs, c. The constraint forces and stiffness matrix are partitioned to
reflect this fact

f =

{

f
b

f
c

}

, k =

[

k
bb

k
bc

kT
bc

k
cc

]

. (5)

Subscripts (·)b and (·)c denote dofs associated with boundary and interface nodes, respectively. Partitioning the
constraint forces defined by eq. (3) yields

f
b
=

{

sλ+ pC
sC

}

, f
c
= −

{

sλ+ pC
}

. (6)

A similar operation for the constraint stiffness matrix leads to

k
bb

=

[

pI sI

sI 0

]

, k
cc

=
[

pI
]

, k
bc

=

[

−pI

−sI

]

. (7)

In summary, each kinematic constraint is associated with a localized Lagrange multiplier element, which generates
a force vector and a stiffness matrix. Clearly, each kinematic constraint can be viewed as finite element and in the
sequel, the terms “kinematic constraint” and “constraint element” will be used interchangeably.

1.4 Assembly procedure for the constraints

In the previous section, the development has focused on a single constraint. To connect the Ns sub-domains, a total
of Nc interface nodes will be defined and the following array stores the dofs at all these interface nodes,

cT =
{

cT1 , c
T
2 , . . . , c

T
Nc

}

. (8)
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Array c is of size nc. The total potential of all constraints associated with sub-domain i, denoted V
(i)
c , is found by

summing up the potentials of the corresponding constraint,

V (i)
c =

N
(i)
b

∑

j=1

Vc. (9)

Finally, the total potential of all kinematic constraints is

Vc =

Ns
∑

i=1

V (i)
c . (10)

Each constraint element contributes constraint forces and stiffness matrices defined by eqs. (6) and (7), respectively.
Using the standard assembly procedure used in the finite element method [7, 8], the force arrays and stiffness matrices
generated by all the constraint elements associated with sub-domain i are assembled in the following global arrays
and matrices

F
(i)
b =

N
(i)
b

∑

j=1

BT

b
f
b
, K(i)

bb
=

N
(i)
b

∑

j=1

BT

b
k
bb
B

b
, (11)

where B
b
is the Boolean matrices used for the assembly process, i.e., ub = B

b
u(i). Of course, the assembly procedure

can be performed in parallel for all sub-domains. Similarly, the constraint elements contribute force arrays and stiffness
matrices to the interface problem,

F (i)
c =

N
(i)
b

∑

j=1

BT

c
f
c
, K(i)

cc
=

N
(i)
b

∑

j=1

BT

c
k
cc
B

c
, (12)

where B
c
is the Boolean matrices used for the assembly process, i.e., c = B

c
c. Finally, the constraint coupling stiffness

is assembled to find

K(i)

bc
=

N
(i)
b

∑

j=1

BT

b
k
bc
B

c
. (13)

2 Solution procedure

In this section, a general solution procedure for block-diagonal systems is presented. For simplicity, the linear system
is rewritten as

Ax = b, (14)

where x is the array of unknowns, b the known right-hand side, and matrix A has the following form

A =























A(1) 0 0 . . . 0 A(1)

bc

0 A(2) 0 . . . 0 A(2)

bc

0 0 A(3) . . . 0 A(3)

bc
...

...
...

. . . 0
...

0 0 0 0 A(Ns) A(Ns)

bc

A(1)T

bc
A(2)T

bc
A(3)T

bc
. . . A(Ns)T

bc
A

cc























. (15)

The procedure described in the previous section leads to system matrices presenting the structure shown in eq. (15).
System (14) will be solved using the classical skyline solver [8], which is based on the factorization of the system

matrix as
A = LDU, (16)

where L and U are lower and upper triangular matrices, respectively, and D a diagonal matrix. A fundamental
property of the skyline solver is that the skylines of matrices L and U are identical to that of matrix A. This implies
that matrices L and U have the following structure

L =





















L(1) 0 0 . . . 0 0

0 L(2) 0 . . . 0 0

0 0 L(3) . . . 0 0
...

...
...

. . . 0
...

0 0 0 0 L(Ns) 0

M (1) M (2) M (3) . . . M (Ns) L
cc





















, (17)
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U =





















U (1) 0 0 . . . 0 V (1)

0 U (2) 0 . . . 0 V (2)

0 0 U (3) . . . 0 V (3)

...
...

...
. . . 0

...

0 0 0 0 U (Ns) V (Ns)

0 0 0 . . . 0 U
cc





















. (18)

Note that matrices M (i) and V (i), i = 1, 2, . . . , Ns are, in general, fully populated matrices. Finally, diagonal matrix
D has the following structure,

D =





















D(1) 0 0 . . . 0 0

0 D(2) 0 . . . 0 0

0 0 D(3) . . . 0 0
...

...
...

. . . 0
...

0 0 0 0 D(Ns) 0
0 0 0 . . . 0 D

cc





















. (19)

2.1 Details of the factorization procedure

The goal of the factorization procedure is to evaluate all the entries of the lower triangular matrix, L, upper triangular
matrix, U , and diagonal matrix, D, defined by eqs. (17), (18), and (19), respectively. The factorization expressed by
eq. (16) implies

A(i) = L(i)D(i)U (i), i = 1, 2, . . . , Ns. (20)

Clearly, the matrices associated with each sub-domain, A(i), can be factorized independently to find lower and upper

triangular matrices L(i) and U (i), respectively, and diagonal matrices, D(i), using the classical skyline solver [7, 8].
Equation (16) also implies

A(i)

bc
= L(i) D(i)V (i) , i = 1, 2, . . . , Ns, (21a)

A(i)

bc
= U (i)TD(i)M (i)T , i = 1, 2, . . . , Ns. (21b)

Once matrices L(i), U (i), and D(i) have been obtained, eqs (21a) and (21b) allow the evaluation of matrices V (i)

and M (i), respectively, using back-substitution. Here again, these operations can be carried out in parallel in each
sub-domain.

The last relationship implied by eq. (16) is A
cc

=
∑Ns

i=1 M
(i)D(i)V (i) + L

cc
D

cc
U

cc
, which lead to the following

factorization
Ā

cc
= L

cc
D

cc
U

cc
, (22)

where

Ā
cc

= A
cc
−

Ns
∑

i=1

A(i)

cc
, (23)

and
A(i)

cc
= M (i)D(i)V (i), i = 1, 2, . . . , Ns. (24)

Matrices A(i)

cc
can be computed in parallel. All sub-domain contributions are then collected to form matrix Ā

cc
,

the factorization of which yields lower and upper triangular matrices L
cc

and U
cc
, respectively, and diagonal matrix

D
cc

using the classical skyline solver. This operation completes the factorization of the system matrix according to
eq. (16).

2.2 Details of the back-substitution procedure

Once the system matrix has been factorized, the solution is obtained via forward- and back-substitution. The first
step of the procedure is to write system (14) as Ly = b, where intermediate solution array y is defined as y = DU x.

This array is partitioned as yT = {y(1)T , y(2)T , . . . , yT
c
}, where y(i), i = 1, 2, . . . , Ns, are the intermediate solution

arrays in each of the sub-domains and y
c
the corresponding interface quantities.
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Given the structure of lower triangular matrix L expressed by eq. (17), forward-substitution yields the components
of intermediate solution array y as

L(i)y(i) = b(i), i = 1, 2, . . . , Ns, (25a)

L
cc
y
c
= bc −

Ns
∑

i=1

d(i), (25b)

where
d(i) = M (i)y(i), (26)

and the right-hand side array was partitioned as bT = {b(1)T , b(2)T , . . . , bTc }.
Once intermediate solution array y is evaluated, intermediate solution array z = U x is defined, where D z = y.

This array is found easily as

D(i)z(i) = y(i), i = 1, 2, . . . , Ns, (27a)

D
c
zc = y

c
. (27b)

Finally, the solution of the problem is obtained, once from from back-substitution

U
cc
xc = zc, (28a)

U (i)x(i) = z(i) − V (i)xc, i = 1, 2, . . . , Ns, (28b)

2.3 Summary of the solution procedure

The input to the factorization procedure are as follows.

1. Stiffness matrices A(i) and A(i)

bc
, i = 1, 2, . . . , Ns, for each of the sub-domains. Matrices A(i) are in compact

storage form. According to eq. (7), each constraint applied to sub-domain i generates two non-vanishing entries

in A(i)

bc
; all other columns of this matrix vanish. Hence, these matrices A(i)

bc
are not assembled. The columns of

matrix A(i)

bc
featuring non-vanishing entries are called the “active columns” of that matrix.

2. Interface stiffness matrix A
cc
. This matrix is in compact storage form.

In summary, the solution procedure can be divided into the five phases detailed below, three of which are paral-
lelized easily.

2.3.1 Phase 1: factorize sub-domain stiffness matrices (parallel)

For each sub-domain, perform the following operations in parallel.

1. Perform the factorization of matrix A(i) expressed by eq. (20) to find matrices L(i), D(i), and U (i). Matrices

L(i), D(i), and U (i) are computed “in place,” i.e., they replace matrix A(i) as the computation proceeds, without
additional storage requirement.

2. Evaluate matrix V (i) with the help of eq. (21a). Each column of this matrix can be found from the corresponding

column of matrix A(i)

bc
using back-substitution. Clearly, only the active columns of matrix A(i)

bc
generate non-

vanishing entries in matrix V (i), i.e., the active columns of matrix V (i) match those of matrix A(i)

bc
. Storage

must be provided for the active columns of matrix V (i) only.

3. Evaluate matrix M (i) with the help of eq. (21b). Each row of this matrix can be found from the corresponding

column of matrix A(i)

bc
using back-substitution. Storage must be provided for the active rows of matrix M (i)

only.

4. Evaluate matrix A(i)

cc
defined by eq. (24). Storage must be provided for this matrix.

In steps 2 and 3, the columns of matrix V (i) and rows of matrix M (i), respectively, can all be evaluated indepen-
dently, providing fine grain parallelelization opportunities.
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2.3.2 Phase 2: factorize interface stiffness matrix

To complete the factorization of the system matrix, perform the following operations dealing with the interface stiffness
matrix.

1. Evaluate matrix Ā
cc

using eq. (23).

2. Factorize matrix Ā
cc

according to eq. (22).

2.3.3 Phase 3: forward-substitute in sub-domains (parallel)

Once the system matrix factorization has been completed, the forward-substitution phase can begin.

1. Find the intermediate solution array, y(i), in each of the sub-domains via forward-substitution using eq. (25a).

Vector y(i) is computed “in place,” i.e., it replaces vector b(i) as the computation proceeds without additional
storage requirement.

2. Compute the contribution of the sub-domain to interface forces, d(i), using eq. (26). Storage must be provided

for vector d(i).

2.3.4 Phase 4: solve for interface displacements

The solution of the interface problem proceeds in three steps.

1. Evaluate the right-hand side of eq. (25b) using the intermediate solution arrays, y(i), computed in the previous

phase. Accumulate sub-domain vectors d(i) in place in array bc.

2. Find array y
c
via forward-substitution, then use eq. (27b) to obtain array zc.

3. Evaluate interface displacements from eq. (28a) by back-substitution.

2.3.5 Phase 5: solve for sub-domain displacements by back-substitution (parallel)

In the last phase of the solution process, the sub-domain nodal displacements are recovered via back-substitution.

1. Evaluate sub-domain arrays z(i) from eq. (27a).

2. Evaluate the right-hand side of eq. (28b).

3. Find sub-domain nodal displacements, x(i), via back-substitution using eq. (28b)
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