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1 Formulation of beam equations

A beam is defined as a structure having one of its dimensions much larger than the other two. The axis of the beam
is defined along that longer dimension and its cross-section is normal to this axis. The cross-section’s geometric and
physical properties are assumed to vary smoothly along the beam’s span. Civil engineering structures often consist
of assemblies or grids of beams with cross-sections having shapes such as T ’s or I ’s. A large number of machine
parts also are beam-like structures: linkages, transmission shafts, robotic arms, etc. Aeronautical structures such as
aircraft wings or helicopter rotor blades are often treated as thin-walled beams. Finally, both tower and rotor blades
of wind turbines also fall within the category of beams structures.

The solid mechanics theory of beams, more commonly referred to simply as “beam theory,” plays an important
role in structural analysis because it provides designers with simple tools to analyze numerous structures [1]. Within
the framework of multibody dynamics, the governing equations for beam structures are nonlinear partial differential
equations, and the finite element method is often used to obtain approximate numerical solutions of these equations.
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Of course, the same finite element approach could also be used to model the same structures based on plate and shell,
or even three-dimensional elasticity models, but at a much higher computation cost. Beam models are often used at
a pre-design stage because they provide valuable insight into the behavior of structures.

Several beam theories have been developed based on various assumptions, and lead to different levels of accuracy.
One of the simplest and most useful of these theories is due to Euler who analyzed the elastic deformation of a
slender beam, a problem known as Euler’s Elastica [2]. Euler-Bernoulli beam theory [1] is now commonly used
in many civil, mechanical and aerospace applications, although shear deformable beam theories [3, 4], often called
“Timoshenko beams,” have also found wide acceptance. Reissner investigated beam theory for large strains [5] and
large displacements of spatially curved members [6, 7].

In this section, the geometrically exact beam theory will be presented. The kinematic description of the problem
developed in section 1.1 accounts for arbitrarily large displacements and rotation, hence the term “geometrically
exact,” although the strain components are assumed to remain small. The kinematics of geometrically beams was
first presented by Simo et al. [8, 9], but similar developments were proposed by Borri and Merlini [10] or Danielson
and Hodges [11, 12].

In many applications, however, beams are, in fact, complex build-up structures with solid or thin-walled cross-
sections. In aeronautical constructions, for instance, the increasing use of laminated composite materials leads to
heterogeneous, highly anisotropic structures. The analysis of complex cross-sections featuring composite materials
and the determination of the associated sectional properties was first presented by Giavotto et al. [13, 14]. Their
approach, based on linear elasticity theory, leads to a two-dimensional analysis of the beam’s cross-section using finite
elements, which yields the sectional stiffness characteristics in the form of a 6×6 stiffness matrix relating the six
sectional deformations, three strains and three curvatures, to the sectional loads, three forces and three moments.
Furthermore, the three-dimensional strain field at all points of the cross-section can be recovered once the sectional
strains are known.

For nonlinear problems, the decomposition of the beam problem into a linear, two-dimensional analysis over
the cross-section, and a nonlinear, one-dimensional analysis along its span was first proposed by Berdichevsky [15].
Hodges [16] has reviewed many approaches to beam modeling; he points out that although the two-dimensional finite
element analysis of the cross-section seems to be computationally expensive, it is, in fact, a preprocessing step that is
performed once only.

A unified theory presenting both linear, two-dimensional analysis over the cross-section, and a nonlinear, one-
dimensional analysis along the beam’s span was further refined by Hodges and his co-workers [17, 18]. The nonlinear,
one-dimensional analysis along the beam’s span corresponds the geometrically exact beam theory developed earlier
based on simplified kinematic assumptions. More sophisticated beam theories have been developed that account for
Vlasov effects [19] or the trapeze effect [20]. Detailed developments of nonlinear composite beam theory developed by
Hodges and his coworkers are found in his textbook [21] and applications to multibody systems in ref. [22].

1.1 Kinematics of the problem
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Figure 1: Curved beam in the reference and deformed con-
figurations.

Figure 1 depicts an initially curved and twisted beam of
length L, with a cross-section of arbitrary shape and area
A. The volume of the beam is generated by sliding the
cross-section along the reference line of the beam, which
is defined by an arbitrary curve in space. Curvilinear
coordinate α1 defines the intrinsic parameterization of
this curve, i.e., it measures length along the beam’s ref-
erence line. Point B is located at the intersection of the
reference line with the plane of the cross-section.

In the reference configuration, an orthonormal ba-
sis, B0(α1) = (b̄1, b̄2, b̄3), is defined at point B. Vec-
tor b̄1 is the unit tangent vector to the reference curve
at that point, and unit vectors b̄2 and b̄3 define the
plane to the cross-section. An inertial reference frame,
FI = [O, I = (̄ı1, ı̄2, ı̄3)], is defined, and the components
of the rotation tensor that brings basis I to B0, resolved
in basis I, are denoted R

0
(α1).

The position vector of point B along the beam’s ref-
erence line is denoted x0(α1). The position vector of material point P of the beam then becomes x(α1, α2, α3) =
x0(α1) + α2 b̄2 + α3 b̄3, where α2 and α3 are the material coordinates along unit vectors b̄2 and b̄3, respectively.
Coordinates α1, α2, and α3 form a natural choice of coordinates to represent the configuration of the beam.
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1.1.1 The displacement field

In the deformed configuration, all the material points located on a cross-section of the beam move to new positions.
This motion is decomposed into two parts, a rigid body motion and a warping displacement field. The rigid body
motion consists of a translation of the cross-section, characterized by displacement vector u(α1) of reference point B,
and of a rotation of the cross-section, which brings basis B0 to B(α1) = (B̄1, B̄2, B̄3), see fig. 1. The components of
the rotation tensor that brings basis B0 to B, resolved in basis I, are denoted R(α1).

The warping displacement field is defined as w(α1, α2, α3) = w1B̄1 + w2B̄2 + w3B̄3. This displacement field
represents a warping that includes both in-plane and out-of-plane deformations of the cross-section. To be uniquely
defined, the warping field should be orthogonal to the rigid body motion [13, 21]. Consequently, unit vectors B̄2 and
B̄3 define the average plane of the cross-section and vector B̄1 is orthogonal to that plane.

The position vector of point P in the deformed configuration now becomes

X(α1, α2, α3) = X0 + w1 B̄1 + (w2 + α2)B̄2 + (w3 + α3)B̄3. (1)

The position of point B is expressed as X0(α1) = x0 + u. Because B̄i = R b̄i = (RR
0
) ı̄i, eq. (1) becomes

X(α1, α2, α3) = x0 + u+ (RR
0
) (w + α2 ı̄2 + α3 ı̄3) . (2)

The warping displacement field is computed from the geometric and stiffness properties of the cross-section, typically
by solving a two-dimensional finite element problem over the cross-section, as described in refs. [13, 21].

1.1.2 The sectional strain measures

The sectional strain measures for beams with shallow curvature are defined as

e =

{
ǫ
κ

}
=

{
x′0 + u′ − (RR

0
) ı̄1,

k +Rki

}
, (3)

where k = axial(R′RT ) are the components of the sectional curvature vector resolved in the inertial basis and ki the
components of the corresponding curvature vector in the reference configuration. Notation (·)′ indicates a derivative
with respect to α1. The strain components resolved in the convected material basis, B, are denoted ǫ∗ = (RR

0
)T ǫ

and consist of the sectional axial and shear strains. The curvature components resolved in the same material basis
are denoted κ∗ = (RR

0
)Tκ and consist of the sectional twisting and bending curvatures. Notation (·)∗ indicates the

components of vectors and tensors resolved in the material basis.
By definition, a rigid body motion is a motion that generates no strains. This implies that the following rigid

body motion, u(α1) = uR + (RR
− I)x0(α1), R(α1) = RR, consisting of a translation, uR, and a rotation about the

origin characterized by a rotation matrix, RR, should generate no straining of the beam. It can be readily verified
with the help of eqs. (3) that such rigid body motion results in ǫ = 0 and κ = 0, as expected.

1.2 Governing equations

For the problem at hand, the principle of virtual work states

∫ L

0

(δǫ∗TN∗ + δκ∗TM∗) dα1 = δWext, (4)

where N∗ and M∗ are the beam’s sectional forces and moments, respectively. The sectional constitutive law relates
the sectional strain measures to the sectional loads,

{
N∗

M∗

}
= C

∗

{
ǫ∗

κ∗

}
, (5)

where C∗ is the beam’s 6×6 sectional stiffness matrix. This matrix is a byproduct of a two-dimensional finite element
analysis over the beam’s cross-section, as discussed in refs. [13, 21]. For homogeneous sections of simple geometry,
exact or approximate analytical expressions are available for the stiffness matrix.

Variations in strain components are expressed using eq. (3) to find

δǫ∗ = (RR
0
)T

[
δu′ + (x̃′0 + ũ′)δψ

]
, (6a)

δκ∗ = (RR
0
)T δψ′. (6b)

where δψ = axial(δRRT ) is the virtual rotation vector. The principle of virtual work, eq. (4), now becomes

∫ L

0

{[
δu′T + δψT (x̃′0 + ũ′)T

]
N + δψ′TM

}
dα1 = δWext, (7)
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where N = (RR
0
)N∗ and M = (RR

0
)M∗ are the beam’s internal forces and moments, respectively, resolved in the

inertial basis.
The virtual work done by the externally applied forces is expressed as δWext =

∫ L

0
[δuT f + δψTm] dα1, where f

and m denote the externally applied forces and moments per unit span of the beam, respectively.
The governing equations of the static problem then follow as

N ′ = −f, (8a)

M ′ + (x̃′0 + ũ′)N = −m. (8b)

1.3 Extension to dynamic problems

The developments presented thus far have focused on static problems. The inertial velocity vector, v, of a material
point is found by taking a time derivative of its inertial position vector, eq. (2), to find

v = u̇+ ṘR
0
s∗ = u̇+ (RR

0
)ω̃∗s∗ = u̇+ (RR

0
)s̃∗Tω∗, (9)

where contributions of warping of the cross-section have been ignored and s∗T =
{
0, α2, α3

}
. Notation ˙(·) indicates

a derivative with respect to time and ω∗ are the components of the angular velocity vector in the material system,
ω∗ = (RR

0
)Tω, where ω = axial(Ṙ R).

The components of the inertial velocity vector of a material point resolved in the material frame now become

v∗ = (RR
0
)T v = (RR

0
)T u̇+ s̃∗Tω∗. (10)

The total inertial velocity of a material point has two components: the first term, (RR
0
)T u̇, due to the translation

of the cross-section, and the second term, s̃∗Tω∗, due to its rotation.

1.3.1 The kinetic energy

The kinetic energy, K, of the beam is

K =
1

2

∫ L

0

∫

A

ρ v∗T v∗ dAdα1, (11)

where ρ is the mass density of the material per unit volume of the reference configuration. Introducing eq. (10) for
the inertial velocity yields

K =
1

2

∫ L

0

∫

A

ρ
[
u̇T (RR

0
) + ω∗T s̃∗

] [
(RR

0
)T u̇+ s̃∗Tω∗

]
dAdα1. (12)

The following sectional mass constants are defined

m =

∫

A

ρ dA, η∗ =
1

m

∫

A

ρ s∗ dA, ̺∗ =

∫

A

ρs̃∗s̃∗T dA, (13)

where m is the mass of the beam per unit span, η∗ the components of the position vector of the sectional center of
mass with respect to point B, see fig. 1, and ̺∗ the components of the sectional tensor of inertia per unit span, all

resolved in the material basis.
After integration over the beam’s cross-section, the kinetic energy, eq. (12), becomes

K =
1

2

∫ L

0

[
mu̇T u̇+ 2mu̇T (RR

0
) η̃∗Tω∗ + ω∗T̺∗ω∗

]
dα1

=
1

2

∫ L

0

V
∗T

M
∗
V
∗ dα1.

To obtain the compact form expressed by the second equality, the sectional mass matrix of the cross-section, resolved
in the material basis, is defined as

M
∗ =

[
mI mη̃∗T

mη̃∗ ̺∗

]
, (14)

and the sectional velocities, also resolved in the material basis, are given by

V
∗ =

{
(RR

0
)T u̇

ω∗

}
=

[
(RR

0
)T 0

0 (RR
0
)T

]{
u̇
ω

}
= (RR

0
)TV . (15)

4



In this expression, the sectional velocities resolved in the inertial system were defined as V
T =

{
u̇T , ωT

}
and the

following notation was introduced

RR
0
=

[
(RR

0
) 0

0 (RR
0
)

]
. (16)

The components of the sectional linear and angular momenta resolved in the material system, denoted h∗ and g∗,
respectively, are

P
∗ =

{
h∗

g∗

}
= M

∗
V
∗. (17)

1.3.2 The governing equations

Variation of the kinetic energy is δK =
∫ L

0
δV∗T

M
∗
V
∗ dα1, where the variations in velocities are δ[u̇T (RR

0
)] =

(δu̇T + δψT ˙̃u
T
)(RR

0
) and δω∗T = ˙δψ

T
(RR

0
). Introducing these variations in the expression for the kinetic energy

yields

δK =

∫ L

0

[
(δu̇T + δψT ˙̃u

T
)(RR

0
)h∗ + ˙δψ

T
(RR

0
) g∗

]
dα1,

The components of the sectional linear and angular momenta, denoted h and g, respectively, resolved in the inertial
system are

P =

{
h
g

}
= (RR

0
)P∗, (18)

where P∗ are the corresponding quantities resolved in the material frame, see eq. (17). The variation in kinetic energy
finally can be written as

δK =

∫ L

0

(δu̇T h+ δψT ˙̃u
T
h+ ˙δψ

T
g) dα1. (19)

With the help of eqs. (7) and (19), the governing equations of motion of the problem are obtained from Hamilton’s
principle, which states that

∫ tf

ti

∫ L

0

{
(δu̇T + δψT ˙̃u

T
)h+ ˙δψ g − (δu′T + δψT ẼT

1 )N

−δψ′TM + δuT f + δψTm
}

dα1dt = 0.

Integration by parts yields the equations of motion of the problem

ḣ−N ′ = f, (20a)

ġ + ˙̃u h−M ′
− (x̃′0 + ũ′)N = m. (20b)

1.4 Effect of extension-twist coupling

The beam theory developed in the previous sections assumes all strain components to remain small. In some cases,
however, the coupling between extension and twisting of the beam becomes an important factor. The associated
potential energy is

A =
1

2
cetκ

∗2
1 ǫ

∗
1, (21)

where κ∗1 is the blade’s twist rate and ǫ∗1 its axial extension, both resolved in the material basis. The extension-twist
stiffness coefficient, cet, is simple the sum of the bending stiffnesses, i.e.,

cet = H22 +H33. (22)

Taking a variation of the extension-twist potential yields δA = 1/2 cetκ
∗2
1 δǫ

∗
1 + cetκ

∗
1ǫ

∗
1δκ

∗
1. This expression can be

recast in a more compact form as
δA = δǫ∗N∗

et + δκ∗M∗

et, (23)

where the force and moment arrays associated with the extension-twist coupling effect were defined as

N∗

et = 1/2 cetκ
∗2
1 ı̄1, (24a)

M∗

et = cetκ
∗
1ǫ

∗
1 ı̄1. (24b)
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When resolved in the inertial basis, the corresponding forces are

N et = 1/2 cetκ
∗2
1 (RR

0
)̄ı1, (25a)

Met = cetκ
∗
1ǫ

∗
1(RR0

)̄ı1. (25b)

The effect of extension-twist coupling is now easily taken into account. In eqs. (20), the force and moment arrays
are replaced by N +Net and M +M et, respectively.

2 Inertial forces

The inertial forces acting in the beam are obtained from the governing equations of motion, eqs. (20),

F
I = Ṗ +

[
0 0
˙̃u 0

]
P, (26)

where P is the momentum array resolved in the inertial system. This momentum array is defined in eqs. (18) and
can be expressed as

P = MV , (27)

where the sectional mass matrix resolved in the inertial system is

M = (RR
0
)M∗(RR

0
)T =

[
mI mη̃T

mη̃ ̺

]
. (28)

The location of the sectional center of mass and its moment of inertia tensor, both resolved in the inertial frame, are
defined as η = (RR

0
)η∗, ̺ = (RR

0
)̺∗(RR

0
)T , respectively.

Expanding eq. (27) now leads to

P =

{
mu̇+mη̃Tω
mη̃u̇+ ̺ω

}
. (29)

The time derivatives of the location of the sectional mass center and its moment of inertia tensor are mη̇ = ω̃mη, and

˙̺ = ω̺̃+ ̺ω̃T , respectively. The time derivative of this momentum array, eq. (27), then becomes

Ṗ =

{
mü+ ( ˙̃ω + ω̃ω̃)mη

mη̃ü+ ˙̃u
T
ω̃mη + ω̺̃ ω + ̺ ω̇

}
. (30)

Finally, the inertial forces, eq. (26), can be written in a compact form as

F
I =

{
mü+ ( ˙̃ω + ω̃ω̃)mη
mη̃ü+ ̺ ω̇ + ω̺̃ ω

}
. (31)

2.1 Linearization of inertial forces

The expression for the inertial forces given above is nonlinear, and the solution process will require linearization of
these forces. First, it will be necessary to compute increments of the sectional mass center location and of the sectional
moment of inertia tensor, which are found to be m∆η = mη̃T∆ψ and (∆̺)b = (̺ b̃− ˜̺b)∆ψ, respectively, where b is
an arbitrary vector. Linearization of the inertial forces then yields

∆F
I = K

I

{
∆u
∆ψ

}
+ G

I

{
∆u̇
∆ω

}
+M

I

{
∆ü
∆ω̇

}
, (32)

where KI , GI , and M
I are the stiffness, gyroscopic, and mass matrices associated with the inertial forces, respectively.

Simple algebra yields

K
I =

[
0 ( ˙̃ω + ω̃ω̃)mη̃T

0 ¨̃umη̃ + (̺ ˙̃ω − ˜̺̇ω) + ω̃(̺ ω̃ − ˜̺ω)

]
, (33a)

G
I =

[
0 ˜̃ωmη

T

+ ω̃mη̃T

0 ω̺̃− ˜̺ω

]
, (33b)

M
I =

[
mI mη̃T

mη̃ ̺

]
. (33c)

Here again, these matrices are expressed in terms of physical quantities, the angular velocity and acceleration.
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2.2 Inertial forces summary

In summary, the inertial forces given by eq. (31) are

F
I =

{
mü+ ˙̃ωmη + ω̃β
mη̃ü+ ν + ω̃γ

}
. (34)

The stiffness, gyroscopic, and mass matrices given by eq. (33a), (33b), and (33c) become

K
I =

[
0 ˙̃ωmη̃T + ω̃µ

0 ¨̃umη̃ + ̺ ˙̃ω − ν̃ + εω̃ − ω̃γ̃

]
, (35a)

G
I =

[
0 β̃T + µ

0 ε− γ̃

]
, (35b)

M
I =

[
mI mη̃T

mη̃ ̺

]
. (35c)

The following notations were introduced

β = ω̃mη, γ = ̺ω, ν = ̺ ω̇, ε = ω̃ ̺, µ = ω̃mη̃T . (36)

3 Elastic forces

The elastic forces acting in the beam element are defined in eqs. (20) and will be treated in two separate components,
denoted F

C and F
D, defined as

F
C = f =

{
N
M

}
, and F

D =

[
0 0

ẼT
1 0

]
f =

{
0

ẼT
1 N

}
, (37)

respectively, where E1 = u′0 + u′. The components of the beam’s sectional force and moment vectors resolved in the
inertial basis are denoted N and M , respectively.

The sectional strains and curvatures are recast in the following compact notation

e =

{
E1 − (RR

0
)̄ı1

k

}
, (38)

where k = axial(R′RT ) are the components of the sectional curvature vector resolved in the inertial basis. The
corresponding strain components resolved in the material basis are

e∗ =

{
(RR

0
)TE1 − ı̄1

(RR
0
)Tk

}
. (39)

The elastic forces in the beam are then f = C e, where C = (RR
0
)C∗(RR

0
)T is the sectional stiffness matrix

resolved in the inertial basis, and the corresponding stiffness matrix resolved in the material basis is denoted C
∗.

3.1 Linearization of elastic forces

The expressions for the elastic forces given above are nonlinear, and the finite element process will require a lineariza-
tion of these forces. First, increments in the curvature vector are easily found as ∆k = ∆ψ′

− k̃∆ψ. Increments in
the strain components, eq. (38), are now easily evaluated to find

∆e =

{
∆u′ + ˜(RR

0
)̄ı1∆ψ

∆ψ′
− k̃∆ψ

}
.

This leads to the following expression for increments in the elastic forces

∆f =

{
ÑT∆ψ

M̃T∆ψ

}
+ C

{
Ẽ1∆ψ +∆u′

∆ψ′

}
.

Taking variations of eq. (37) yields the following expression for increments in the elastic forces

∆F
C = C

{
∆u′

∆ψ′

}
+O

{
∆u
∆ψ

}
, ∆F

D = P

{
∆u′

∆ψ′

}
+Q

{
∆u
∆ψ

}
, (40)
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where the stiffness matrices are

O =

[
0 C

11
Ẽ1 − Ñ

0 C
21
Ẽ1 − M̃

]
, P =

[
0 0

Ñ + (C
11
Ẽ1)

T (C
21
Ẽ1)

T

]
, Q =

[
0 0

0 ẼT
1 O12

]
. (41)

The following partitions were introduced

C =

[
C

11
C

12

C
21

C
22

]
, O =

[
0 O

12

0 O
22

]
. (42)

3.2 Elastic forces summary

In summary, the elastic forces given by eq. (37) are

F
C = C e =

{
N
M

}
, F

D =

{
0

ẼT
1 N

}
. (43)

The stiffness matrices given by eqs. (41) become

O =

[
0 ε− Ñ

0 µ− M̃

]
, (44a)

P =

[
0 0

Ñ + εT µT

]
, (44b)

Q =

[
0 0

0 ẼT
1 O12

]
. (44c)

The following notations were defined
ε = C

11
Ẽ1, µ = C

21
Ẽ1. (45)

3.3 Effect of extension-twist coupling

As discussed in section 1.4, the effect of extension-twist coupling is that the force and moment arrays are replaced by
N+N et andM+Met, respectively. Introducing this substitution in the elastic forces and stiffness matrices presented
in the previous section will account for the effect of extension-twist coupling.

The extension-twist forces and moments should also be linearized to yield the consistent tangent stiffness matrices.
This leads to the following updated stiffness matrix resolved in the material basis

C
∗ + cet

[
0 κ∗1 ı̄1ı̄

T
1

κ∗1 ı̄1ı̄
T
1 ǫ∗1 ı̄1ı̄

T
1

]
, (46)

where the second term represents the effect of the extension-twist coupling.

4 Dissipative forces

The beam model discussed in the previous section is a conservative model, because the elastic forces are proportional
the strain measures. It is often desirable to also introduce dissipative forces in the beam model. The dissipative forces
in the material frame, denoted f∗

d
, will be written as

f∗
d
=

{
N∗

d

M∗

d

}
= µC∗ė∗, (47)

where µ is the damping coefficient of units 1/s, and ė∗ the time rate of change of the strains resolved in the material
frame. Since the dissipative mechanisms in the beam are not well understood, it is postulated that the damping
matrix is proportional to the stiffness matrix. The time rate of change of the sectional strains in the material frame
are readily obtained from eq. (39) as

ė∗ =

{
(RR

0
)T (u̇′ + Ẽ1ω)

(RR
0
)T (k̇ + k̃ω)

}
=

{
(RR

0
)T (u̇′ + Ẽ1ω)

(RR
0
)Tω′

}
, (48)

where the second equality results from the following identity, k̇ − ω′ = ω̃k.

8



The dissipative forces resolved in the inertial frame now become

f
d
= µC ė, (49)

where fT
d
=

{
NT

d ,M
T
d

}
, and Nd = (RR

0
)N∗

d and Md = (RR
0
)M∗

d are the are the sectional dissipative force and

moment vector components in the inertial frame, respectively, C = (RR
0
)C∗(RR

0
)T is the sectional stiffness matrix

resolved in the inertial basis, and ė follows from eq. (48) as

ė =

{
u̇′ + Ẽ1ω

ω′

}
. (50)

The dissipative forces will be treated in two separate components, denoted F
C
d and F

D
d ,

F
C
d = f

d
=

{
Nd

Md

}
, F

D
d =

[
0 0

ẼT
1 0

]
f
d
=

{
0

ẼT
1 Nd

}
. (51)

4.1 Linearization of dissipative forces

Because the expression for the dissipative forces is nonlinear, the solution process will require a linearization. Incre-
ments in the strain array are evaluated to find

∆ė =

{
∆u̇′ + Ẽ1(∆̇ψ − ω̃∆ψ) + ω̃T∆u′

∆̇ψ
′

− ω̃∆ψ′
− ω̃′∆ψ

}
. (52)

Next, increments in the dissipative forces are computed

∆f
d
=

{
ÑT

d ∆ψ

M̃T
d ∆ψ

}
+ µC

{[
0 ˙̃u

′

− ω̃Ẽ1

0 0

]{
∆u
∆ψ

}
+

[
ω̃T 0
0 ω̃T

]{
∆u′

∆ψ′

}
+

[
0 Ẽ1

0 0

]{
∆u̇

∆̇ψ

}
+

{
∆u̇′

∆̇ψ
′

}}
. (53)

Taking variations of eq. (51) yields the following expression for increments in the dissipative forces

∆F
C
d = S

d

{
∆u′

∆ψ′

}
+O

d

{
∆u
∆ψ

}
+ G

d

{
∆u̇

∆̇ψ

}
+ µC∆

{
∆u̇′

∆̇ψ
′

}
, (54a)

∆F
D
d = P

d

{
∆u′

∆ψ′

}
+Q

d

{
∆u
∆ψ

}
+ X

d

{
∆u̇

∆̇ψ

}
+ Y

d
∆

{
∆u̇′

∆̇ψ
′

}
. (54b)

In summary, the dissipative forces can be written in the following form

F
C
d = µC ė =

{
Nd

Md

}
, F

D
d =

{
0

ẼT
1 Nd

}
, (55)

where the gyroscopic and stiffness matrices are

S
d
= µC

[
ω̃T 0
0 ω̃T

]
, O

d
=

[
0 µC

11
α− Ñd

0 µC
21
α− M̃d

]
, G

d
=

[
0 βT

11

0 βT

12

]
, (56)

and

P
d
=

[
0 0

Ñd + β
11
ω̃T β

12
ω̃T

]
, Q

d
=

[
0 0

0 ẼT
1 O12

]
, X

d
=

[
0 0

0 ẼT
1 G12

]
, Y

d
=

[
0 0
β
11

β
12

]
. (57)

The following notation was introduced

α = ˙̃u
′

− ω̃Ẽ1, β
11

= ẼT
1 µC11

, β
12

= ẼT
1 µC12

. (58)

5 Gravity forces

For many applications, the gravity forces associated with the beam’s distributed mass must be taken into account.
The potential of these gravity forces is V = mgT (u0+u+ η), where vector η defines the location of the sectional mass
center.

A variation of this potential is easily found to be δV = gT (mδu +mη̃T δψ) and the gravity forces acting on the
cross-section are readily found as

F
G =

{
mg
mη̃g

}
. (59)
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6 Rigid rotation forces

It is sometime desirable to perform a static analysis, i.e. an analysis that neglects inertial forces. This can be
easily achieved setting all time derivatives to zero in the equations of motion derived in the previous paragraphs, and
solve the resulting nonlinear algebraic system. Furthermore, it is also possible to perform an eigenvalue analysis to
determine the natural frequencies of the structure. In that case, the mass, gyroscopic, and stiffness matrices of the
system must be evaluated.

6.1 Rotating structure

An interesting case to consider is that where one of more subcomponents of the structure to be analyzed are rotating
at a constant angular velocity with respect to other subcomponents. While such problem is not strictly speaking
a static problem because the rotating subcomponents feature non-vanishing linear and angular velocities, it can be
formulated as a static problem where the centrifugal forces generated by the rigid body rotation are applied on the
otherwise static structure.

Figure 2 shows a non-rotating structure, a simple cantilevered beam in this case, with a rotating subcomponent,
a tip rotating beam. Frame FI = [O, I = (̄ı1, ı̄2, ı̄3)] is the inertial frame, frame FA

0 = [A,BA
0 = (b̄A10, b̄

A
20, b̄

A
30)] is

attached to the non-rotating structure at pointA in its reference configuration, and frame FA = [A,BA = (b̄A1 , b̄
A
2 , b̄

A
3 )]

is attached to the non-rotating structure at pointA in the deformed configuration. Frame FR = [A,BR = (b̄R1 , b̄
R
2 , b̄

R
3 )]

rotates at a constant angular velocity, ωr, with respect to frame FA.

i1

_
i2

_

i3

_

O

I

Non-rotating

structure

b1

_
 R

b3

_
 A

b3

_
 R b2

_
 R

b2

_
 Ab1

_
 A

A

P

ωr_

Rotating

structure

z_

Figure 2: A structure featuring a subcomponent rotating
at a constant angular velocity ωr.

Let RA

0
and RA be the components of the rotation

tensors that bring triad I to BA
0 and triad BA

0 to BA,
respectively, both resolved in the inertial basis, I. Fur-
thermore, let R∗

r
be the components of the rotation ten-

sor describing the finite rotation from triad BA to BR,
resolved in basis BA. With these definition, it follows
that

b̄R1 = (RARA

0
)R∗

r
ı̄1. (60)

The time derivative of this unit vector is readily com-
puted as

˙̄bR1 = ω̃r b̄
R
1 , (61)

where ω̃∗
r = Ṙ

∗

r
R∗T

r
are the components of the relative

angular velocity of the rotating subcomponent with re-
spect to its non-rotating counterpart resolved in basis
BA, and ωr = (RARA

0
)ω∗

r the components of the same
vector resolved in the inertial basis. It is assumed here that the rotating subcomponent rotates at a given, constant
angular velocity with respect to the non-rotating subcomponent, i.e. ω∗

r is a constant vector in time. Note that for
a static problem, components ωr are also constant, although not known, because the motion of frame FA is itself
unknown.

6.2 Rigid body rotation forces

Consider now an arbitrary pointP of the rotating structure and its position vector, z, with respect to pointA, as shown
in fig. 2. Since the motion of the rotating structure is a rigid body rotation, the inertial velocity of point P is simply
u̇ = ω̃rz. The components of this vector in the rotating frame, u̇∗ = R∗T

r
(RARA

0
)T u̇, are constant because the motion

of the rotating structure is at a constant angular velocity, ω∗
r . This implies R∗T

r ω̃∗
r (R

ARA

0
)T u̇ +R∗T

r
(RARA

0
)T ü = 0,

and hence ü = ω̃ru̇. In summary, the velocity and acceleration fields of the rotating structure are
{
u̇
ω

}
=

{
ω̃rz
ωr

}
, and

{
ü
ω̇

}
=

{
ω̃rω̃rz

0

}
, (62)

respectively.
The forces associated with the rigid body rotation are readily found by inserting these fields into eq. (31) to find

the centrifugal forces applied to the rotating structure as

Fr =

{
mω̃rω̃rz + ω̃rω̃rmη
mη̃ω̃rω̃rz + ω̃r̺ωr

}
. (63)

Note that these are the “static forces,” i.e. time independent forces, applied to the structure due to its rigid body
rotation. In a static analysis, the steady centrifugal forces given by eq. (63) are applied to the non-rotating structure.
In other words, for the static analysis, the structure is not rotating, but subjected to the steady centrifugal loading
that would appear if the structure were actually rotating.
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6.3 Linearization of the rigid body rotation forces

Although the rigid body rotation considered here is characterized by an angular velocity vector of constant magnitude,
the orientation of this angular velocity vector is unknown as the structure is allowed to deform statically, i.e., the
rotation tensor at point A is unknown. Similarly, the relative position vector z shown in fig. 2 is not known because
it is a function of the displacements at points P and A. These facts are expressed by the following relationships,

∆ωr = ω̃T
r ∆ψA

, (64a)

∆z = ∆u−∆uA, (64b)

where ∆uA and ∆ψ
A
are small increments in the position and rotation at point A.

To solve the nonlinear static problem, a linearization process similar to that described in section 2.1 must be
performed. The linearization of the inertial forces associated with the rigid body motion can be cast as

∆Fr = K̄
r

{
∆u
∆ψ

}
+ Ḡ

r

({
∆u̇
∆ω

}
+

{
∆(ω̃rz)
∆ωr

})
+ M̄

r

({
∆ü
∆ω̇

}
+

{
∆(ω̃rω̃rz)

0

})
, (65)

where K̄
r
, Ḡ

r
, and M̄

r
are the stiffness, gyroscopic, and mass matrices associated with the rigid rotation forces,

respectively, obtained by introducing the velocity and acceleration fields associated with the rigid body rotation,
eqs. (62), into the corresponding matrices defined in eqs. (33a), (33b), and (33c) to find

K̄
r
=

[
0 ω̃rω̃rmη̃

T

0 ˜̃ωrω̃rz mη̃ + ω̃r(̺ ω̃r − ˜̺ωr)

]
, (66a)

Ḡ
r
=

[
0 ˜̃ωrmη

T

+ ω̃rmη̃
T

0 ω̃r̺− ˜̺ωr

]
, (66b)

M̄
r
=

[
mI mη̃T

mη̃ ̺

]
. (66c)

The second terms appearing in the two parentheses of eq. (65) correspond to perturbations in the rigid body
rotation. With the help of eqs. (64), these perturbations are expressed as

{
∆(ω̃rz)
∆ωr

}
=

[
ω̃r 0
0 0

]{
∆u
∆ψ

}
+

[
ω̃T
r z̃T ω̃T

r

0 ω̃T
r

]{
∆uA
∆ψ

A

}
, (67a)

{
∆(ω̃rω̃rz)

0

}
=

[
ω̃rω̃r 0
0 0

]{
∆u
∆ψ

}
+

[
ω̃rω̃

T
r (z̃ω̃r − 2ω̃rz̃)ω̃

T
r

0 0

]{
∆uA
∆ψ

A

}
(67b)

Introducing these results into eq. (65) then yields the desired linearization of the rigid body rotation forces

∆Fr = M
r

{
∆ü
∆ω̇

}
+ G

r

{
∆u̇
∆ω

}
+K

r

{
∆u
∆ψ

}
+K

A

{
∆uA
∆ψ

A

}
, (68)

where the following matrices were defined

K
r
= K̄

r
+ M̄

r

[
ω̃rω̃r 0
0 0

]
+ Ḡ

r

[
ω̃r 0
0 0

]
= K̄

r
+

[
mω̃rω̃r 0
mη̃ω̃rω̃r 0

]
, (69a)

G
r
= Ḡ

r
, (69b)

M
r
= M̄

r
, (69c)

K
A
= M̄

r

[
ω̃rω̃

T
r (z̃ω̃r − 2ω̃rz̃)ω̃

T
r

0 0

]
+ Ḡ

r

[
ω̃T
r z̃T ω̃T

r

0 ω̃T
r .

]
(69d)

K̄A =

[
mω̃rω̃

T
r

[
ωT
r m(z + η) + ωrm(z + η)T

]
ω̃T
r

mη̃ω̃rω̃
T
r

[
mη̃(ωT

r z + ωrz
T ) + ω̃r̺− ˜̺ωr

]
ω̃T
r

]
. (70)

7 Finite element implementation

With the notation defined in eqs. (26) and (37), the equations of motion of curved beams can be recast in the following
compact form, FI

−F
C′ + F

D = F
G + F

ext, where F
ext are the external forces applied to the beam.
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A weighted residual formulation will be used here to enforce these dynamic equilibrium conditions

∫ ℓ

0

NT
(
F

I
−F

C′ + F
D
−F

G
−F

ext
)
dα1 = 0,

where ℓ is the length of the beam element and N a matrix storing the selected test functions. An integration by parts
is performed on the second term of this equation, leading to

∫ ℓ

0

(
NT

F
I +N ′T

F
C +NT

F
D
)
dα1 =

∫ ℓ

0

NT (FG + F
ext) dx1.

Since this set of algebraic equations is nonlinear, a linearization process is required to solve it. Equation (40) is
introduced to find ∫ ℓ

0

[
NT

(
F

I +K
I∆q + G

I∆v +M∆a+ F
D + P∆q′ +Q∆q

)

+ N ′T
(
F

C + S∆q′ +O∆q
)]

dα1 =

∫ ℓ

0

NT (FG + F
ext) dα1.

Next, the elemental displacement, velocity, and acceleration fields are expressed in terms of their nodal values using
the assumed shape functions, q(x1) = N q̂, q′(x1) = N ′q̂, v(x1) = N v̂, a(x1) = N â, where q̂, v̂, and â are the
nodal values of the displacements, velocities, and accelerations, respectively. With the help of these interpolations of
elemental fields, the weak statement of dynamic equilibrium becomes

M̂∆â+ Ĝ∆v̂ + K̂∆q̂ = F̂
G
+ F̂

ext

− F̂ . (71)

The mass, gyroscopic, and stiffness matrices of the beam element are

M̂ =

∫ ℓ

0

NT
MN dα1, (72a)

Ĝ =

∫ ℓ

0

NT
G
IN dα1, (72b)

K̂ =

∫ ℓ

0

[
NT (KI +Q)N +NT

P N ′ +N ′T
S N ′ +N ′T

ON
]
dα1, (72c)

respectively, whereas the elemental forces, gravity loads, and externally applied loads are

F̂ =

∫ ℓ

0

(
NT

F
I +NT

F
D +N ′T

F
C
)
dα1, (73a)

F̂
G
=

∫ ℓ

0

NT
F

G dα1, F̂
ext

=

∫ ℓ

0

NT
F

ext dα1, (73b)

respectively.

8 Interpolation strategy

8.1 Interpolation of the reference and initial configurations

The reference and initial configurations of the system are described by the displacements and rotations at the node
of the beam element,

U
k
0 =

{
uk0
ck0

}
, U

k
i =

{
uki
cki

}
, (74)

respectively, where superscript (·)k indicates the node number and rotations are represented by the Wiener-Milenković
parameters, denoted c. The displacement field and its spatial derivative are obtain by interpolation as

u0(s) =

N∑

k=1

hk u
k
0 , ui(s) =

N∑

k=1

hk u
k
i , (75a)

u′0(s) =

N∑

k=1

h+k
J
uk0 , u′i(s) =

N∑

k=1

h+k
J
uki , (75b)
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where N is the total number of nodes of the element and hk(s) are the shape functions of the element. Notations (·)′

(·)+ indicate derivatives with respect to variable x1 and s, respectively. The Jacobian of the variable transformation
is denoted J = dα1/ds.

The nodal rotations relative to node 1, denoted rk0 and rki in the reference and initial configurations, respectively,
are obtained as follows

rk0 = c1−0 ⊕ ck0 , rki = c1−i ⊕ cki , k = 1, 2, . . . , N, (76)

where symbol ⊕ indicates the composition of rotation operation. As discussed by Bauchau et al. [23], the relative
rotation field is obtained by interpolation of the relative rotations at the nodes,

r0(s) =
N∑

k=1

hk r
k
0 , ri(s) =

N∑

k=1

hk r
k
i . (77)

The rotation field is finally obtained by restoring the rotation of node 1 to find

c0(s) = c10 ⊕ r0(s), ci(s) = c1i ⊕ ri(s). (78)

8.2 Interpolation of the present configuration

At a particular instant in the dynamic simulation, the response of the system is characterized by the nodal displace-
ments, velocities, and accelerations, denoted

U
k =

{
uk

ck

}
, V

k =

{
vk

ωk

}
, A

k =

{
ak

αk

}
. (79)

respectively, where vk = u̇k and ak = v̇f are the nodal linear velocities and accelerations, respectively. Array ωk

stores the nodal angular velocities and αk = ω̇k the nodal angular accelerations.
The displacement, velocity, and acceleration fields are obtained through interpolation as

u(s) =

N∑

k=1

hk u
k, v(s) =

N∑

k=1

hk v
k, a(s) =

N∑

k=1

hk a
k. (80)

The angular velocity and acceleration fields are obtained in a similar manner as

ω(s) =

N∑

k=1

hk ω
k, α(s) =

N∑

k=1

hk α
k. (81)

It is also necessary to evaluate the spatial derivatives of the displacements and velocities

u′(s) =

N∑

k=1

h+k
J
uk, v′(s) =

N∑

k=1

h+k
J
vk, ω′(s) =

N∑

k=1

h+k
J
ωk. (82)

The nodal rotations relative to node 1, denoted rk, are obtained as follows rk = c1− ⊕ ck, k = 1, 2, . . . , N . The
relative rotation field and its spatial derivative are obtained by interpolation of the relative rotations at the nodes,

r(s) =

N∑

k=1

hk r
k, r′(s) =

N∑

k=1

h+k
J
rk. (83)

The rotation field is finally obtained by restoring the rotation of node 1 to find c(s) = c1 ⊕ r(s).
To evaluate the strain field, the following quantities are required,

E1 = u′0(s) + u′(s) (84)

The curvature vector is found as
κ = R(c1)H(r)r′. (85)
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