
Dymore User’s Manual

The generalized-α time integration scheme

Contents

1 Introduction 1

2 The generalized-α scheme 1

2.1 Optimal choice of the coefficients . 2

3 Practical implementation for nonlinear problems 4

4 Practical implementation for constrained problems 5

4.1 Scaling of the constraint equations . 5
4.2 Summary . 6

5 Practical implementation in the presence of motion 7

5.1 Summary . 8

1 Introduction

The generalized-α [1] scheme generalizes the classical Hilber-Hughes-Taylor [2] time integra-
tions scheme, which is widely used for structural dynamics problems. For linear problems,
these schemes achieve high-frequency numerical dissipation while minimizing unwanted low-
frequency dissipation. Both methods have been successfully used for both linear and nonlin-
ear problems, although unconditional stability is proved for linear systems only. For instance,
Cardona and Géradin [3] used the Hilber-Hughes-Taylor scheme for integrating the equations
of motion in mechanism analysis.

2 The generalized-α scheme

The generalized-α scheme used here is that presented by Arnold and Brüls [4] rather than
the original scheme of Chung and Hulbert [1]. It is typically presented for linear structural
dynamics problems characterized by the following equations of motion

M q̈ +G q̇ +K q = f(t), (1)

1

where array q stores the n generalized coordinates, M , G, and K are the constant mass,
damping, and stiffness matrices of the system, respectively, and f(t) the externally applied,
time-dependent force array. These equations of motion form a set of linear, second-order,
coupled ordinary differential equations.

A typical time step starts and ends at times ti and tf , respectively, and h = tf − ti is the
time step size. Subscripts (·)i and (·)f are used to identify quantities evaluated at times ti
and tf , respectively. The generalized displacement, velocity, and acceleration arrays at time
ti are denoted q

i
, q̇

i
, and q̈

i
, respectively. Similar notations are defined at the end of the

time step using subscript (·)f .
In this formulation, the solution at the end of the time step is written as

q
f
= q

i
+ hq̇

i
+
[

(1
2
− β)h2ai + βh2af

]

, (2a)

hq̇
f
= hq̇

i
+
[

(1− γ)h2ai + γh2af
]

, (2b)

where β and γ are two parameters that will be selected to achieve desirable stability and
accuracy characteristics for the scheme. These equations use algorithmic accelerations, af
and ai, which are related to the actual accelerations of the system through the following
recurrence relationship,

(1− αm)af + αmai = (1− αf)q̈f + αf q̈i, (3)

where αm and αf are two additional parameters that will be selected to achieve desirable
stability and accuracy characteristics for the scheme.

The discrete equations of motion, eqs. (1), are satisfied at time tf ,

M q̈
f
+G q̇

f
+K q

f
= f(tf). (4)

2.1 Optimal choice of the coefficients

The generalized-α scheme [1] is unconditionally stable, second-order accurate, and present
high frequency numerical dissipation when the parameters of the scheme are chosen as fol-
lows. The spectral radius of the amplification matrix, ̺, is a function of the non-dimensional
time step, h̄ = h/T , where T is the natural period of the system. Let ̺

∞
denote the spectral

radius for very large time step sizes, i.e., ̺
∞

= ̺(h̄ → ∞). Parameters αm and αf are then
selected as

αm =
2̺

∞
− 1

̺
∞
+ 1

, αf =
̺
∞

̺
∞
+ 1

, (5)

where ̺
∞

∈ [0, 1].
If the spectral radius of the amplification matrix vanishes for h̄ → ∞, asymptotic anni-

hilation is achieved. Parameters γ and β are then selected as follows

γ =
1

2
− αm + αf , β =

1

4
(1− αm + αf)

2. (6)

2

ϱ∞=1.0

ϱ∞=0.8

ϱ∞=0.6

ϱ∞=0.4

ϱ∞=0.2ϱ∞=0.0

S
p

ec
tr

a
l

ra
d

iu
s

1

0.8

0.6

0.4

0.2

0

h
-10-2 10-1 100 101 102 103

Figure 1: Spectral radius of the amplifica-
tion matrix for the generalized-α scheme ver-
sus h̄ = h/T . ̺

∞
= 0.0, 0.2, 0.4, 0.6, 0.8 and

1.0.

Figure 1 shows the spectral radius of
the amplification matrix of the generalized-
α scheme versus non-dimensional time step
size, for six values of the numerical dissi-
pation at infinity, ̺

∞
= 0.0, 0.2, 0.4, 0.6,

0.8 and 1.0. In all six cases, the spec-
tral radius nearly equals unity at low fre-
quency, i.e., for small values of h̄. As the
frequency increases, the spectral radius de-
creases monotonically and approaches ̺

∞

for h̄ → ∞. Asymptotic annihilation is
achieved for ̺

∞
= 0.0.

The accuracy of the generalized-α
scheme is characterized by its period elon-
gation and algorithmic damping shown in
figs. 2 and 3, respectively. For ̺

∞
= 1.0,

the generalized-α scheme is identical to the
Newmark algorithm [5]: the scheme presents no algorithmic damping. Of course, as the
numerical dissipation at infinity increases, i.e., as ̺

∞
decreases, the algorithmic damping

increases significantly, even at low frequency, as revealed by fig. 3. As ̺
∞

decreases, the pe-
riod elongation increases, but to a lesser extend. The scheme, however, remains second-order
accurate even when asymptotic annihilation is achieved, i.e., when ̺

∞
= 0. Clearly, numer-

ical dissipation is achieved at the expense of accuracy, although the generalized-α scheme
remains second-order accurate for all values of ̺

∞
.

ϱ∞=1.0

ϱ∞=0.8
ϱ∞=0.6
ϱ∞=0.4

ϱ∞=0.2

ϱ∞=0.0

1

0.8

0.6

0.4

0.2

0

h
-

P
er

io
d

 e
lo

n
g
a
ti

o
n

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Figure 2: Period elongation of the
generalized-α scheme. ̺

∞
= 0.0, 0.2, 0.4,

0.6, 0.8 and 1.0.

ϱ∞=1.0

ϱ∞=0.8

ϱ∞=0.6

ϱ∞=0.4

ϱ∞=0.2ϱ∞=0.0

h
-

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

A
lg

o
ri

th
m

ic
 d

a
m

p
in

g

0.1

0.08

0.06

0.04

0.02

0

Figure 3: Algorithmic damping of the
generalized-α scheme. ̺

∞
= 0.0, 0.2, 0.4,

0.6, 0.8 and 1.0.

3

3 Practical implementation for nonlinear problems

For nonlinear system, the mass, gyroscopic, and stiffness matrices become functions of the
unknowns, and eq. (1) now becomes F f = f(tf), where F f is the sum of all forces applied
to the system at time tf . Linearizing these equations leads to

M
f
∆q̈

f
+G

f
∆q̇

f
+K

f
∆q

f
= f(tf)−F f , (7)

where M
f
, G

f
, and K

f
are the mass, gyroscopic, and stiffness matrices, respectively, ex-

pressed in terms of the unknowns at time tf , and ∆q
f
, ∆q̇

f
, and ∆q̈

f
, the increments in the

generalized coordinates, velocities, and accelerations.
The recurrence relationship, eq. (3), is solved for the incremental algorithmic acceleration

to find
∆af = c5q̈i + c6ai + c9∆q̈

f
, (8)

where coefficients c5, c6, and c9 are defined as

c5 =
αf

1− αm

, c6 = −
αm

1 − αm

, c9 =
1− αf

1− αm

. (9)

Introducing eq. (8) into eq. (2a) yields

∆q
f
= hq̇

i
+ c1q̈i + c2ai + c8∆q̈

f
, (10)

where coefficients c1, c2, and c8 are defined as

c1 =
βαf

1− αm

h2, c2 = (
1

2
−

β

1− αm

)h2, c8 =
β(1− αf)

1− αm

h2. (11)

Finally, introducing eq. (8) into eq. (2b) yields

∆q̇
f
= q̇

i
+ c3q̈i + c4ai + c7∆q̈

f
, (12)

where coefficients c3, c4, and c7 are defined as

c3 =
γαf

1− αm

h, c4 = (1−
γ

1− αm

)h, c7 =
γ(1− αf)

1− αm

h. (13)

Next, eqs. (10) and (12) are introduced in the discrete nonlinear equations of motion,
eq. (7), to find
(

M
f
+ c7Gf

+ c8Kf

)

∆q̈
f
= f(tf)− F f −K

f

(

hq̇
i
+ c1q̈i + c2ai

)

−G
f

(

q̇
i
+ c3q̈i + c4ai

)

.

To simplify the notation, the following predictor expressions are defined

∆q
p
= hq̇

i
+ c1q̈i + c2ai, (14a)

q̇
p
= q̇

i
+ c3q̈i + c4ai, (14b)

ap = c5q̈i + c6ai. (14c)

(

M
f
+ c7Gf

+ c8Kf

)

∆q̈
f
= f(tf)− Ff −K

f
∆q

p
−G

f
q̇
p
. (15)

4

4 Practical implementation for constrained problems

For constrained system, the constraint forces must also be considered, together with the
Lagrange multipliers used to enforce the constraints. For holonomic constraints written as
C(q, t) = 0, the constraint forces are expressed as

F c = BT (λ+ pC), (16)

where B = ∂C/∂q is the constraint matrix, λ the array of Lagrange multipliers use to enforce
the constraints, and p a penalty coefficient. The last term corresponds to the augmented
Lagrangian formulation, as proposed by Bayo et al. [6, 7]. Linearization of the constraint
forces yields

∆F c =
[

X(λ+ pC) + pBTB
]

∆q +BT∆λ. (17)

The first term of this expression is simply an additional contribution to the stiffness matrix,
and the second term is the actual force of constraint.

For constrained systems, the linearized equations of motion of the system, eqs. (7), be-
come

M
f
∆q̈

f
+G

f
∆q̇

f
+K

f
∆q

f
+BT

f
∆λf = f(tf)−F f , (18)

where the stiffness matrix, K
f
, now includes an additional contribution, the first term of

eq. (17), and the load vector, Ff , includes the force of constraint.The constraint must be
satisfied together with the equations of motion and after linearization, become

B
f
∆q

f
= −Cf . (19)

Next, eqs. (10) and (12) are introduced in the discrete nonlinear equations of motion,
eqs. (18) and (19), to find

(

M
f
+ c7Gf

+ c8Kf

)

∆q̈
f
+BT

f
∆λf = f(tf)−F f −K

f
∆q

p
−G

f
q̇
p
, (20a)

c8Bf
∆q̈

f
= −Cf − B

f
∆q

p
. (20b)

4.1 Scaling of the constraint equations

A cursory examination of these equations of motion reveals two obvious numerical problems.
First, the unknowns of the problem are of different units: accelerations for ∆q̈

f
and forces for

the Lagrange multipliers. Second,if the mass and/or damping and/or stiffness of the system
become large, one or more of the first three terms of the equations of motion will become
large, whereas the constraint equations remain unchanged. In other words, for systems
with large mass, damping, or stiffness, the constraint equations become “invisible” to the
numerical process.

To resolve these issues, the governing equations, eqs. (20), are recast as

(

M
f
+ c7Gf

+ c8Kf

)

∆q̈
f
+ rBT

f

(

∆λf

r

)

= f(tf)−F f −K
f
∆q

p
−G

f
q̇
p
, (21a)

sc8Bf
∆q̈

f
= −sCf − sB

f
∆q

p
. (21b)

5

The Lagrange multipliers were scaled by factor r and the second equation was scaled by
factor s. For the two sets of unknowns to share the same units, factor r must have units of
mass and hence, it is appropriate to select r ≈ mr+drh+krh

2. In this expression, mr, dr, and
kr represent characteristic mass, damping and stiffness coefficients of the system, selected as
the average of the diagonal terms of the mass, damping, and stiffness matrices, respectively.
To achieve the second goal, factor c8s must have units of mass, i.e., c8s ≈ mr + drh + krh

2.
Because c8 = c̄8h

2, where c̄8 = β(1− αf)/(1− αm) ≈ 1, scaling factor s is selected as

s = kr +
dr
h

+
mr

h2
. (22)

Finally, to preserve the symmetry of the system, scaling factor r is selected as

r = c8s. (23)

Note that this choice gives r = c̄8h
2s = c̄8(mr + drh+ krh

2); as desired, scaling factor r has
units of mass.

Introducing the expressions for the scaling factors, eqs. (22) and (23), into the equations
of motion, eqs. (21), leads to

[

M
f
+ c7Gf

+ c8Kf
c8sB

T

f

c8sBf
0

]

{

∆q̈
f

∆λ̄f

}

=

{

f(tf)− F f −K
f
∆q

p
−G

f
q̇
p

−sCf − sB
f
∆q

p

}

, (24)

where the scaled Lagrange multipliers are defined as

λ̄ =
λ

c8s
. (25)

To complete the formulation, a value must be selected for the penalty coefficient intro-
duced in eq. (16). This penalty term gives rise to a stiffness matrix contribution, pBTB,
shown in eq. (17). To be effective, this term should be of the same order as the other entries
of the stiffness matrix and hence, it is reasonable to select p ≈ s, where scaling factor s is
defined by eq. (22). With this choice, it is possible to define a modified Lagrange multiplier

µ = λ+ pC = s(c8λ̄+ C). (26)

In summary, the constraint forces, F c
f and the associated stiffness matrix, Kc

f
, are of the

following form

F c
f =

{

−BT

f
µ

−sCf

}

, Kc

f
=

[

c8

[

sBT

f
B

f
+X(µ)

]

c8sB
T

f

c8sBf
0

]

. (27)

4.2 Summary

At each time step, the solution of the nonlinear equations of motion involves the following
procedure. The initial conditions are given as q̇

i
, q̈

i
, and ai.

6

1. The unknowns at time tf are initialized using the predictor step, which assumes that
q̈
f
= 0, to find ∆q

f
= ∆q

p
, q̇

f
= q̇

p
, q̈

f
= 0, and af = ap, where the predictors ∆q

p
,

q̇
p
, and ap are given by eq. (14).

2. Solve for the incremental accelerations and scaled Lagrange multipliers using eq. (24).

3. Increment the unknowns with the following update formulæ

∆q
f
= ∆q

f
+ c8∆q̈

f
, (28a)

q̇
f
= q̇

f
+ c7∆q̈

f
, (28b)

q̈
f
= q̈

f
+ ∆q̈

f
, (28c)

af = af + c9∆q̈
f
. (28d)

4. Iterate over steps 2 and 3 until convergence.

5 Practical implementation in the presence of motion

At each time step, the solution of the nonlinear equations of motion involves the following
procedure. The initial conditions are p̂i, the Euler motion parameters representing the

motion at the beginning of the time step, V i, the initial velocities, and Ai = V̇ i, the initial
accelerations. The algorithm uses internal algorithmic acceleration variables X , which are
initialized at t0 as X = A(t0).

When the system configuration is defined by motion quantities, the increment in motion
from ti to tf is defined by array ∆U , which stacks the incremental motions at each node of the
model. At node k, this incremental motion is denoted ∆U (k). To facilitate the manipulation
of motion operations, the Euler motion parameters associated with the incremental motion
at each node is constructed as

p̂(k)
inc

=
2ô+ ∆̂U

(k)

‖2ô+ ∆̂U
(k)
‖
, (29)

where ∆̂U
(k)

is the bi-quaternion whose vector parts are those of the incremental motion
∆U (k) and whose scalar parts vanish.

1. Predictor step:

∆U = hV i + c1Ai + c2X , (30a)

Vf = V i + c3Ai + c4X , (30b)

X = c5Ai + c6X (30c)

Af = 0 (30d)

Using eq. (29), the Euler motion parameters for node k at time tf become

p̂
(k)
f = A(p̂

(k)
i)p̂

(k)
inc . (31)

7

2. Solve for the incremental accelerations
[

M
f
+ c7Gf

+ c8Kf

]

∆Af = f(tf)−F f . (32)

3. Corrector step:

∆U = ∆U + c8∆Af , (33a)

Vf = Vf + c7∆Af , (33b)

Af = Af + ∆Af (33c)

X = X + c9∆Af (33d)

The Euler motion parameters at time tf are evaluated using eq. (31).

4. Iterate over steps 2 and 3 until convergence.

5.1 Summary

The overall computation implementation of the generalized-α scheme is given in table 1.

Table 1: Overall computation implementation of the generalized-α scheme.
Loop over time steps {

Loop over rejections {

Compute coefficients using eqs. (9), (11), and (13).

Perform the predictor step eqs. (30).

Loop over iterations {

Compute matrices and applied loads.

Solve for incremental accelerations using eqs. (32).

Increment configuration using eq. (31)

}

if solution is acceptable: end loop over rejections;

else: adjust time step size or contact conditions, start next rejection.

}

Update configuration.

}

References

[1] J. Chung and G.M. Hulbert. A time integration algorithm for structural dynamics with
improved numerical dissipation: The generalized-α method. Journal of Applied Mechan-

ics, 60:371–375, 1993.

8

[2] H.M. Hilber, T.J.R. Hughes, and R.L. Taylor. Improved numerical dissipation for time
integration algorithms in structural dynamics. Earthquake Engineering and Structural

Dynamics, 5:283–292, 1977.

[3] A. Cardona and M. Géradin. Time integration of the equations of motion in mechanism
analysis. Computers & Structures, 33(3):801–820, 1989.

[4] M. Arnold and O. Brüls. Convergence of the generalized-α scheme for constrained me-
chanical systems. Multibody System Dynamics, 18(2):185–202, 2007.

[5] N.M. Newmark. A method of computation for structural dynamics. Journal of the

Engineering Mechanics Division, 85:67–94, 1959.

[6] E. Bayo, J. Garćıa de Jalón, and M.A. Serna. A modified Lagrangian formulation for
the dynamic analysis of constrained mechanical systems. Computer Methods in Applied

Mechanics and Engineering, 71:183–195, November 1988.

[7] E. Bayo, J. Garćıa de Jalón, A. Avello, and J. Cuadrado. An efficient computational
method for real time multibody dynamic simulation in fully Cartesian coordinates. Com-

puter Methods in Applied Mechanics and Engineering, 92:377–395, 1991.

9

	Introduction
	The generalized- scheme
	Optimal choice of the coefficients

	Practical implementation for nonlinear problems
	Practical implementation for constrained problems
	Scaling of the constraint equations
	Summary

	Practical implementation in the presence of motion
	Summary

