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Formulation and finite element implementation of flexible joints
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1 Formulation of the flexible joint

The flexible joint consists of a set of six concentrated springs and dampers connecting two bodies. The relative motion
of the two bodies consists of relative displacements of two points of the bodies and relative rotations of the two bodies.
The relative displacements stretch the first three springs, also referred to as rectilinear springs, whereas the relative
rotations stretch the next three springs, referred to as rotational springs. Similarly, the rates of change of the relative
displacements stroke the first three dampers, also referred to as rectilinear dampers, whereas the rates of change of
the relative rotations stroke the next three dampers, referred to as rotational dampers. If any of the spring constants
are select to be large values, the corresponding relative motion is driven to become very small, and the flexible joint
behaves like a lower pair joint. This observation clearly underlines the close relationship between the flexible joint
and the lower pair joints.

I

Deformed

configuration

Reference

configuration

b1

_
 k

b2

_
 k

b1

_
 l

b2

_
 l

i1

_

i3

_

i2

_

b03

_
 k

b03

_
 l

=

b02

_
 k

b02

_
 l

=

b01

_
 k

b01

_
 l

=

K L=

L

b3

_
 k b3

_
 l

 k
u , R

=
_

 k

 l
u , R

=
_

 l

u0

 k
u0

 l
=_ _

O

K

B
k

B
l

Figure 1: Configuration of a flexible joint.

Consider two rigid bodies linked together by recti-
linear and torsional springs and dampers at a point, as
depicted in fig. 1. The relative displacements between
point K and L, denoted u, is simply u = uℓ − uk. The
components of this vector, resolved in basis in Bk, are
then

u∗ = (RkR
0
)T (uℓ − uk) = (RkR

0
)T u. (1)

The relative rotation of the rigid bodies will be mea-
sured by the following vector

s∗ =
1

2





g32 − g23
g13 − g31
g21 − g12



 , (2)

where the scalars gαβ = b̄kTα b̄ℓβ . It is clear that b̄kα =

(RkR
0
) ı̄α and b̄ℓα = (RℓR

0
)̄ıα. Hence, the components

of the relative rotation tensor that brings basis Bk to
basis Bℓ, resolved in the inertial frame, are R = RℓRkT . The components of the same rotation tensor resolved in basis

Bk are then R∗ = RT

0
RkTRℓR

0
. Consequently, the measure of the relative rotation of the rigid bodies defined eq. (2)

becomes

s∗ =
1

2






R∗

32
−R∗

23

R∗

13
−R∗

31

R∗

21
−R∗

12




 = axial(R∗). (3)

If ê∗ are the Euler parameters of relative rotation tensor R∗, it follows that

s∗ = 2






e∗
0
e∗
1

e∗
0
e∗
2

e∗
0
e∗
3




 = 2e∗
0
e∗ = 2 cos

φ

2
sin

φ

2
n̄∗ = sinφ n̄∗ (4)
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where φ the magnitude of the relative rotation and n̄∗ the components of the unit vector about which it takes place
resolved in basis Bk. This result provides the physical interpretation of vector s∗: it represents the linear parameters
of the relative rotation from basis Bk to basis Bℓ, resolved in Bk.

1.1 Elastic forces in the flexible joint

The deformation of the flexible joint will be characterized by the following strain measures

ǫ∗ =

{
u∗

s∗

}
, (5)

and the following expression is assumed for the strain energy in the flexible joint

A =
1

2
ǫ∗TD∗ǫ∗, (6)

where D∗ are the components of the flexible joint stiffness matrix resolved in the the body attached basis Bk. This
6 × 6 stiffness matrix is fully populated allowing the modeling of the various linear and torsional stiffnesses, as well
as potential elastic couplings. Virtual changes in the strain energy now become

δA = δǫ∗TD∗ǫ∗ = ⌊δu∗T , δs∗T ⌋

{
f∗

m∗

}
, (7)

where the forces and moments in the flexible joint were defined as

{
f∗

m∗

}
= D∗ǫ∗. (8)

Virtual changes in the flexible joint deformation measure, δǫ∗, can be readily evaluated from eq. (5) as

δǫ∗ =

[
(RkR

0
)T 0

0 ST

]{
−

[
I ũT

0 I

]{
δuk

δψk

}
+

{
δuℓ

δψℓ

}}
. (9)

The operator S is defined as

S =
1

2
[h

23
− h

32
, h

31
− h

13
, h

12
− h

21
] , (10)

where the vectors hαβ = b̃kαb̄
ℓ
β . Virtual changes in the strain energy now become

δA =

{
−⌊δukT , δψkT ⌋

[
I 0
ũ I

]
+ ⌊δuℓT , δψℓT ⌋

}{
f

m

}
, (11)

where f = (RkR
0
)f∗ and m = Sm∗.

The expression for the elastic forces, Fe, in the flexible joint are now

δA =






δuk

δψk

δuℓ

δψℓ






T 




−f
−m− ũf

f

m





=






δuk

δψk

δuℓ

δψℓ






T

Fe. (12)

The following compact notation is used to express these forces

Fe =

{
F k

e

F ℓ
e

}
; F ℓ

e =

{
f

m

}
; F k

e = −

[
I 0
ũ I

]
F ℓ

e. (13)

1.1.1 Linearization of the elastic forces

The solution process will require a linearization of the elastic forces. At first, the following increments are computed

∆f = ∆(RkR
0
f∗) = f̃T∆ψk + (RkR

0
)∆f∗, ∆m = ∆(S m∗) = Xk∆ψk +Xℓ∆ψℓ + S∆m∗.

In these expressions, the following notation was used

Gk =
[
gk
1
, gk

2
, gk

3

]
= (RkR

0
)
m̃∗

2
, Gℓ =

[
gℓ
1
, gℓ

2
, gℓ

3

]
= (RℓR

0
)
m̃∗

2
,
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and
Xk(m∗) = g̃ℓ

1
b̃k
1
+ g̃ℓ

2
b̃k
2
+ g̃ℓ

3
b̃k
3
, Xℓ(m∗) = g̃k

1
b̃ℓ
1
+ g̃k

2
b̃ℓ
2
+ g̃k

3
b̃ℓ
3
.

Next, the linearization of the elastic force components resolved in the material basis is computed with the help of
eq. (9) to find

∆

{
f∗

m∗

}
= D∗

[
(RkR

0
)T 0

0 ST

]{
−

[
I ũT

0 I

]{
∆uk

∆ψk

}
+

{
∆uℓ

∆ψℓ

}}
.

Combining the above results yields

∆F ℓ
e = ∆

{
f

m

}
= Kℓk

{
∆uk

∆ψk

}
+Kℓℓ

{
∆uℓ

∆ψℓ

}
,

where

Kℓk =

{[
0 f̃T

0 Xk

]
−D

[
I ũT

0 I

]}
, Kℓℓ =

{[
0 0

0 Xℓ

]
+D

}
.

The components of the stiffness matrix resolved in the inertial basis are

D =

[
(RkR

0
) 0

0 S

]
D∗

[
(RkR

0
)T 0

0 ST

]
.

The linearization of the second part of the elastic forces is

∆F k
e = Kkk

{
∆uk

∆ψk

}
+Kkℓ

{
∆uℓ

∆ψℓ

}
,

where

Kkk =

[
0 0

f̃T 0

]
−

[
I 0
ũ I

]
Kℓk, Kkℓ =

[
0 0

f̃ 0

]
−

[
I 0
ũ I

]
Kℓℓ.

1.2 Dissipative forces in the flexible joint

The rate of deformation of the flexible joint will be characterized by the following strain rate measures

ǫ̇∗ =

{
u̇∗

ṡ∗

}
. (14)

By analogy with eq. (8), the dissipative forces and moments in the flexible joint are assumed to take the following
form {

h∗

g∗

}
= Q∗ǫ̇∗, (15)

where Q∗ are the components of the flexible joint damping matrix resolved in the the body attached basis Bk. This
6 × 6 damping matrix is fully populated allowing the modeling of the various rectilinear and torsional damping
coefficients, as well as potential couplings.

The strain rates in the flexible joint readily follow from eq. (5) as

ǫ̇∗ =

[
(RkR

0
)T 0

0 ST

]{
−

[
I ũT

0 I

]{
u̇k

ωk

}
+

{
u̇ℓ

ωℓ

}}
=

[
(RkR

0
)T 0

0 ST

]{
u̇+ ũωk

ωℓ − ωk

}
, (16)

where operator S was defined in eq. (10) and the angular velocities of bodies k and ℓ are denoted ωk and ωℓ,
respectively. The virtual work done by the dissipative forces and moments is

δW =

{
−⌊δukT , δψkT ⌋

[
I 0
ũ I

]
+ ⌊δuℓT , δψℓT ⌋

}{
h

g

}
, (17)

where h = (RkR
0
)h∗ and g = S g∗. The expression for the dissipative forces, Fd, in the flexible joint now becomes

δW =






δuk

δψk

δul

δψl






T 




−h
−g − ũh

h

g





=






δuk

δψk

δul

δψl






T

Fd. (18)

The following compact notation is used to express these forces

Fd =

{
F k

d

F ℓ
d

}
; F ℓ

d =

{
h

g

}
; F k

d = −

[
I 0
ũ I

]
F ℓ

d. (19)
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1.2.1 Linearization of the dissipative forces

The solution process will require a linearization of the dissipative forces. At first, the following increments are
computed

∆h = ∆(RkR
0
h∗) = h̃T∆ψk + (RkR

0
)∆h∗, ∆g = ∆(S g∗) = Y k∆ψk + Y ℓ∆ψℓ + S∆g∗.

In these expression, the following notation was used

Gk =
[
gk
1
, gk

2
, gk

3

]
= (RkR

0
)
g̃∗

2
, Gℓ =

[
gℓ
1
, gℓ

2
, gℓ

3

]
= (RℓR

0
)
g̃∗

2
,

and
Y k(g∗) = g̃ℓ

1
b̃k
1
+ g̃ℓ

2
b̃k
2
+ g̃ℓ

3
b̃k
3
, Y ℓ(g∗) = g̃k

1
b̃ℓ
1
+ g̃k

2
b̃ℓ
2
+ g̃k

3
b̃ℓ
3
.

Next, the linearization of the components of the dissipative forces resolved in the material basis are computed with
the help of eq. (16) to find

∆

{
h∗

g∗

}
= Q∗

[
(RkR

0
)T 0

0 ST

]{
−

[
I ũT

0 I

]{
∆u̇k

∆ωk

}
+

{
∆u̇ℓ

∆ωℓ

}
+

[
ω̃k ˜(u̇+ ũωk)

0 S−TZk

]{
∆uk

∆ψk

}
+

[
ω̃kT 0

0 S−TZℓ

]{
∆uℓ

∆ψℓ

}}
,

where the following notation was used

Gk =
[
gk
1
, gk

2
, gk

3

]
= (RkR

0
)
ω̃ℓ − ω̃k

2
, Gℓ =

[
gℓ
1
, gℓ

2
, gℓ

3

]
= (RℓR

0
)
ω̃ℓ − ω̃k

2
,

and
Zk(g∗) = g̃ℓ

1
b̃k
1
+ g̃ℓ

2
b̃k
2
+ g̃ℓ

3
b̃k
3
, Zℓ(g∗) = g̃k

1
b̃ℓ
1
+ g̃k

2
b̃ℓ
2
+ g̃k

3
b̃ℓ
3
.

Combining the above results yields

∆F ℓ = ∆

{
h

g

}
= Gℓk

{
∆u̇k

∆ωk

}
+Gℓℓ

{
∆u̇ℓ

∆ωℓ

}
+Kℓk

{
∆uk

∆ψk

}
+Kℓℓ

{
∆uℓ

∆ψℓ

}
,

where

Gℓk = −Q

[
I ũT

0 I

]
, Gℓℓ = Q.

and

Kℓk =

[
0 h̃T

0 Y k

]
+Q

[
ω̃k ˜(u̇+ ũωk)

0 S−TZk

]
, Kℓℓ =

[
0 0

0 Y ℓ

]
+Q

[
ω̃kT 0

0 S−TZℓ

]
.

The rotated damping matrix was defined as

Q =

[
(RkR

0
) 0

0 S

]
Q∗

[
(RkR

0
)T 0

0 ST

]
.

The linearization of the second half of the dissipative forces is

∆F k = Gkk

{
∆u̇k

∆ωk

}
+Gkℓ

{
∆u̇ℓ

∆ωℓ

}
+Kkk

{
∆uk

∆ψk

}
+Kkℓ

{
∆uℓ

∆ψℓ

}
,

where

Gkk = −

[
I 0
ũ I

]
Gℓk, Gkℓ = −

[
I 0
ũ I

]
Gℓℓ.

and

Kkk =

[
0 0

h̃T 0

]
−

[
I 0
ũ I

]
Kℓk, Kkℓ =

[
0 0

h̃ 0

]
−

[
I 0
ũ I

]
Kℓℓ.
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