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Abstract

This paper is concerned with the dynamic analysis of flexible, nonlinear multi-
body systems undergoing contact involving friction and rolling. A continuous friction
law is used to model the friction forces between contacting bodies. This avoids the
numerical problems associated with the discontinuity inherent to Coulomb’s friction
law and eliminates the need for different sets of equations modeling sliding and rolling
as distinct phenomena. On the other hand, continuous friction laws eliminate specific
physical phenomena implied by Coulomb’s friction law. The condition of vanishing
relative velocity between two contacting bodies is not possible: sticking or rolling are
replaced by creeping with a small relative velocity. Discrete events such as transition
from slipping to rolling or rolling to slipping are eliminated, together with the high
frequency phenomena they are likely to cause. The computational issues associated
with the continuous friction law and with the enforcement of the non-holonomic rolling
constraint are addressed in this paper. This work is developed within the framework
of energy preserving and decaying time integration schemes that provide unconditional
stability for nonlinear, flexible multi-body systems undergoing contact involving friction
and rolling.

1 Introduction

This paper is concerned with the dynamic analysis of flexible, nonlinear multi-body systems
undergoing contact involving friction and rolling. Contact can occur between two rigid or
deformable bodies of the system, or with an external body. The approaches to modeling
of intermittent contact fall into two broad categories depending on the assumed duration
of contact. In the first approach, contact is treated as a discontinuity, i.e. the duration of
contact is assumed to tend to zero. The configuration of the system is assumed to be identical
before and after impact, and the principle of impulse and momentum is used to compute
the momenta after impact. Energy transfer during impact can be modeled in a heuristic
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manner using the concept of coefficient of restitution. This approach was first proposed by
Kane [1], then applied to rigid multi-body systems by Haug and Wehage [2], and extended
to flexible systems by Khulief and Shabana [3]. The accuracy of this approach is inherently
limited by the assumption of a vanishing impact duration. Furthermore, energy balance is
not necessarily satisfied when the principle of impulse and momentum is applied [4].

In the second approach, contact is of finite duration, and the time history of the forces act-
ing between the contacting bodies which can be either rigid or deformable is explicitly com-
puted during the simulation. Of course, a constitutive law describing the force-deformation
relationship for the contacting bodies is required if the bodies are deformable. This approach
was used by a number of researchers [5, 6, 7], among others. Various types of constitutive
laws were used, but the classical solution of the static contact problem presented by Hertz [8]
has been used by many investigators. Energy dissipation can be added in an appropriate
manner, as proposed by Hunt and Crossley [9].

A methodology for the analysis of flexible multibody systems undergoing intermittent
contacts of finite duration was developed in [10]. The overall approach is broken into three
separate parts: a purely kinematic part describing the configuration of the contacting bodies,
a unilateral contact condition, and an optional contact model. The first, purely kinematic
part of the problem uses the concept of candidate contact points [11], i.e. the points of
the bodies that are the most likely to come in contact if the bodies were in contact. These
points are defined by a number of holonomic constraints that involve the kinematic variables
defining the configuration of the contacting bodies and the parameters that describe the
curve defining their outer shape. The knowledge of the location of these candidate contact
points leads to the definition of the relative distance q between the bodies.

The second part of the model is the unilateral contact condition which is readily expressed
in terms of the relative distance as q ≥ 0. This condition is transformed into a holonomic
constraint by the addition of a slack variable. For simple cases, this procedure yields a
discrete version of the principle of impulse and momentum. The last part of the model is the
contact model which takes into account the physical characteristics of the contacting bodies.
This model consists of a constitutive law that describes the relationship between the normal
contact force and the local inter-penetration of the bodies, called approach.

More often than not, friction will play an important role when two bodies come in contact.
Friction is a phenomenon involving complex interaction mechanisms between the surfaces
of solids being pressed into contact [12, 13]. Coulomb’s friction law has been extensively
used to model friction forces. It postulates that the friction force between to bodies sliding
with respect to each other is equal to the normal contact force times an empirical coefficient
µk, the coefficient of kinetic friction. The friction force always acts in a direction opposing
relative motion. Sliding gives way to rolling or sticking when the relative velocity vanishes.
In that case, the friction force must be smaller than the normal contact force times an
empirical coefficient µs, the coefficient of static friction.

Computer simulations using Coulomb’s friction law encounter numerical difficulties asso-
ciated with the discontinuity of the friction force at zero relative velocity. Furthermore, the
transition points from slipping to rolling or rolling to slipping must be accurately determined.
Consequently, various approximations to Coulomb’s law have been presented in the litera-
ture [14, 15, 16]; a comparison between these various models appears in [17]. Although based
on different physical arguments, these various approximations can be viewed as continuous
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friction laws that replace the discontinuity at zero relative velocity present in Coulomb’s
friction law by a smooth, rapidly varying function of the relative velocity. Various types of
smoothing functions have been used by different authors [13, 18, 7, 19]. It is important to
note that the continuous friction law replaces both kinetic and static friction laws.

The advantages of using a continuous friction law are clear. First, the numerical problems
associated with the discontinuity inherent to Coulomb’s friction law are avoided. Second,
the need for different sets of equations modeling sliding and rolling as distinct phenomena
is eliminated, and the accurate determination of the transition points is not required. On
the other hand, continuous friction laws eliminate specific physical phenomena implied by
Coulomb’s friction law. The condition of vanishing relative velocity between two contacting
bodies is not possible. Hence, sticking or rolling are replaced by creeping with a small relative
velocity. Discrete events such as transition from slipping to rolling or rolling to slipping are
eliminated, together with the high frequency phenomena they are likely to cause. The
computational issues associated with the continuous friction law and with the enforcement
of the rolling constraint will be addressed in this paper.

The discretization of the friction forces and the non-holonomic rolling constraint will be
formulated within the framework of the energy preserving and decaying schemes introduced
in [20, 21, 22, 23]. In these schemes, unconditional stability is achieved for nonlinear elastic
multi-body systems by combining two features: an energy preservation or decay statement
for the elastic bodies of the system, and the vanishing of the work done by the forces of
constraint. The use of these unconditionally stable schemes is of particular importance in
contact problems involving friction and rolling whose dynamic response is very complex due
to the large, rapidly varying contact and friction forces applied to the system.

The paper is organized in the following manner. Section 2 presents the kinematic descrip-
tion of the contact problem, and Coulomb’s classical friction law is reviewed in section 3.
Sections 4 and 5 present the modeling of the friction forces and rolling constraint, respec-
tively. Details of the computation strategy used in this work are discussed in section 6, and
three numerical examples presented in section 7.

2 Contact kinematics

2.1 Kinematic conventions and notations

The kinematic description of bodies in their undeformed and deformed configurations will
make use of three orthogonal triads. First, an inertial triad is used as a global reference for
the system; it is denoted SI with unit vectors ~ı1, ~ı2, and ~ı3. A second triad S0, with unit
vectors ~e01, ~e02, and ~e03 is attached to the body and defines its orientation in the reference
configuration. Finally, a third triad S∗ with unit vectors ~e1, ~e2, and ~e3 defines the orientation
of the body in its deformed configuration.

Let ~u0 and ~u be the displacement vectors from SI to S0, and S0 to S∗, respectively, and
R0 and R the rotation tensors from SI to S0, and S0 to S∗, respectively. In this work, all
vector and tensor components are measured in either SI or S∗. For instance, the components
of vector ~u measured in SI , and S∗ will be denoted u, and u∗, respectively, and clearly

u∗ = RT
0 RT u. (1)
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Similarly, the components of tensor R measured SI , and S∗ will be denoted R, and R∗,
respectively. The skew-symmetric matrix formed with the components u will be denoted ũ.

2.2 Contacting body geometry

Intermittent contact is considered between two bodies of the system whose external shapes
are described by planar curves that will be defined by their Bézier [24] representation, as
shown in fig. 1. The present work is limited to planar contact problems. A typical curve is
defined in the body attached coordinate system S∗. Let p0 be the components of the position
vector of a point on the curve measured in S∗. The derivatives of the position vector are

p1(η) =
dp0

dη
; p2(η) =

d2p0

d2η
, (2)

where η ∈ [0, 1] parameterizes the Bézier curve and can be viewed as a material coordinate
along the curve. Note that p1 is not a unit tangent vector since η does not measure length

along the curve. The unit tangent vector ~t, and the external normal to the curve are then

t(η) =
p1

|p1| ; n(η) = t× b, (3)

where b are the components of the vector normal to the plane of the curve.

2.3 Contacting pair geometry

The two bodies undergoing intermittent contact, denoted with superscripts (.)k and (.)l,
respectively, are depicted in fig. 1. The components Zk of the position vector of a point on
the curve defining the outer shape of body k are

Zk = uk
0 + uk + (RkRk

0 p0k). (4)

A similar definition holds for the components Z l of the position vector of a point on the
curve defining the outer shape of body l. The points on the curves that are the natural
candidates to come in contact are defined by the following two constraints [11]

(p1kT RkT
0 RkT ) b̃ (RlRl

0 p1l) = 0; (5)

(p1kT RkT
0 RkT ) Z = 0. (6)

The first constraint implies the orthogonality of the tangent to body k and the external
normal to body l, whereas the second constraint expresses the orthogonality of the tangent
to body k and the vector Z = Z l−Zk joining the two candidate points. These two nonlinear
equations could be used to determine ηk and ηl, the parameters defining the positions of
the candidate contact point on the two curves. Finally, the relative distance q between the
two candidate contact points is readily found as the projection of vector Z on the external
normal to body k

q =
p1kT

|p1k| RkT
0 RkT b̃ Z = (tT RkT

0 RkT ) b̃ Z. (7)
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Reference [10] details how the nonlinear holonomic constraints (4, 5, 6) and (7) can be
enforced within the framework of the energy preserving and decaying schemes introduced
in [21].

3 Coulomb’s friction law

Coulomb’s friction law postulates that if two bodies are sliding with respect to each other at
a relative tangential velocity vt, a friction force F f acting in the tangential direction appears
at the contact point, such that

F f = −µk(vt) sign(vt) F n, (8)

where F n is the positive normal contact force and µk(vt) the coefficient of kinetic friction.
Fig. 2 depicts the friction force as a function of the tangential velocity, for the simple case
of a constant friction coefficient µk = 0.3 and unit normal force F n = 1. Sliding gives way
to rolling or sticking when the relative velocity vanishes. In that case, the friction force is

F f ≤ µs F n, (9)

where µs is the coefficient of static friction.
Coulomb’s friction law presents a discontinuity of the friction force at zero relative ve-

locity, as shown in fig. 2. This discontinuity causes numerical difficulties in computer sim-
ulations and hence, various approximations to Coulomb’s law have been proposed in the
literature [14, 15, 16, 17]. These various approximations can be viewed as continuous fric-
tion laws that replace the discontinuity at zero relative velocity by a smooth, rapidly varying
function of the relative velocity. In this work, the following continuous friction law [25] will
be used

F f = −µk(vt) sign(vt) (1− e−|vt|/v0) F n, (10)

where v0 is a characteristic relative velocity typically chosen to be small compared to the
maximum relative velocity encountered during the simulation. Fig. 2 shows the friction force
corresponding to the continuous friction law for v0 = 0.5 m/sec. It is important to note that
the continuous friction law replaces both kinetic and static friction laws.

4 Modeling friction forces

The inertial velocity of the material point that instantaneously coincides with the candidate
contact point is found by taking a time derivative of eq. (4) while holding the curve parameter
ηk constant, to find

Ż
k

= u̇k + ( ˜RkRk
0 p0k)T ωk, (11)

where (̇) denotes a derivative with respect to time, ω̃k = ṘkRkT , and ωk is the angular
velocity of body k. The relative velocity of the candidate contact points on each body then
becomes

vr = Ż
l − Ż

k
= [u̇l + (R̃lRl

0 p0l)T ωl]− [u̇k + ( ˜RkRk
0 p0k)T ωk]. (12)
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The component of relative velocity in the tangential direction is

vt =
(RlRl

0 p1l)T

|RlRl
0 p1l|

{
[u̇l + (R̃lRl

0 p0l)T ωl]− [u̇k + ( ˜RkRk
0 p0k)T ωk]

}
. (13)

In view of the constraints described in section 2.3, the tangents at the candidate contact
points are parallel to each other but pointing in opposite directions, see fig. 1. Consequently,
the tangential velocity writes

vt = (RkRk
0 tk)T [u̇k + ( ˜RkRk

0 p0k)T ωk] + (RlRl
0 tl)T [u̇l + (R̃lRl

0 p0l)T ωl]. (14)

Virtual changes in the tangential component of the relative position are found in a similar
manner

δqt = [δukT + δψkT ( ˜RkRk
0 p0k)] RkRk

0 tk + [δulT + δψlT (R̃lRl
0 p0l)] RlRl

0 tl, (15)

where δ̃ψ
k

= δRk RkT expresses virtual changes in the orientation of body k. The virtual
work done by the friction force now becomes

δWf = δqt F f . (16)

The generalized friction forces Ff are found by introducing (15) to find

δWf =




δuk

δψk

δul

δψl




T

·




F f RkRk
0 tk

F f RkRk
0 p̃0k tk

F f RlRl
0 tl

F f RlRl
0 p̃0l tl


 =




δuk

δψk

δul

δψl




T

· Ff . (17)

This work is formulated within the framework of energy preserving schemes which combine
two features: an energy preservation statement for the elastic bodies, and the vanishing of the
work done by the forces of constraint. This results in exact preservation of the total energy
for the nonlinear multi-body systems [21]. To ensure the stability of the time integration
process in the presence of friction forces, it is necessary to prove that the work done by the
discretized friction forces is always dissipative. The following discretization of the generalized
friction forces is proposed

Ff
m =




F f
m (I +

r̃k

2
) Rk

i R
k
0 tkm

F f
m (I +

r̃k

2
) Rk

i R
k
0 p̃0k

m tkm

F f
m (I +

r̃l

2
) Rl

iR
l
0 tlm

F f
m (I +

r̃l

2
) Rl

iR
l
0 p̃0l

m tlm




. (18)

where F f
m are the mid-point friction forces, r the components of the Rodrigues parameters

used to measure the incremental rotations, see Appendix A, and

p0

m
=

p0
f

+ p0
i

2
; tm =

1

2
(

p1
f

|p1
f
| +

p1
i

|p1
i
|). (19)
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Subscripts (.)i and (.)f are used to indicate the value of a quantity at the initial time ti and
final time tf of a time step of size ∆t, respectively. The work done by the discretized friction
forces is computed as follows

∆Wf

∆t
= F f

m




btkT

m , tkm p̃0k
m

T c (RkT
0 RkT

i




(I − r̃k

2
)
uk

f − uk
i

∆t

(I − r̃k

2
)
rk

∆t


)

+ btlTm , tlm p̃0l
m

T c (RlT
0 RlT

i




(I − r̃l

2
)
ul

f − ul
i

∆t

(I − r̃l

2
)

rl

∆t


)





. (20)

Note that the two terms in parenthesis are the discretized mid-point velocities of bodies k
and l. The work then becomes

Wf

∆t
= F f

m vtm, (21)

where vtm is the mid-point tangential velocity. Finally, introducing the continuous friction
law (10) expressed at the mid-point yields

Wf

∆t
= −µk(vtm) |vtm| (1− e−|vtm|/v0) F n

m ≤ 0, (22)

where F n
m is the mid point normal contact force. Inequality (22) guarantees energy dissi-

pation in the presence of friction forces, and hence, establishes the numerical stability of
the discrete time integration procedure in the presence of friction forces. Generalization to
energy decaying schemes is straightforward by following the steps outlined in [21].

5 Modeling the rolling constraint

When two contacting bodies are rolling or sticking, their relative tangential velocity vanishes,
and they exert on each other a friction force given by (9). The rolling or sticking constraint
is vt = 0, where vt is given by (14). This corresponds to a non-holonomic constraint which
writes

C = [δukT + δψkT ( ˜RkRk
0 p0k)] RkRk

0 tk + [δulT + δψlT (R̃lRl
0 p0l)] RlRl

0 tl = 0. (23)

As discussed in [21], constraints are enforced by the addition of a constraint potential λ C,
where λ is the Lagrange multiplier. The forces of constraint F c corresponding to the rolling
constraint (23) are readily obtained as

δC · λ =




δuk

δψk

δul

δψl




T

·




λ RkRk
0 tk

λ RkRk
0 p̃0k tk

λ RlRl
0 tl

λ RlRl
0 p̃0l tl


 =




δuk

δψk

δul

δψl




T

· F c. (24)
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To obtain unconditionally stable schemes for constrained systems, these forces of constraint
must be discretized so that the work they perform vanishes exactly. The following discretiza-
tion is proposed

F c
m =




sλm (I +
r̃k

2
) Rk

i R
k
0 tkm

sλm (I +
r̃k

2
) Rk

i R
k
0 p̃0k

m tkm

sλm (I +
r̃l

2
) Rl

iR
l
0 tlm

sλm (I +
r̃l

2
) Rl

iR
l
0 p̃0l

m tlm




, (25)

where s is a scaling factor for the Lagrange multiplier, and λm the unknown mid-point value
of this multiplier. The work done by these constraint forces is computed as follows

∆Wf

∆t
= sλm




btkT

m , tkmp̃0kT
m c (RkT

0 RkT
i




(I − r̃k

2
)
uk

f − uk
i

∆t

(I − r̃k

2
)
rk

∆t


)

+ btlTm , tlmp̃0lT
m c (RlT

0 RlT
i




(I − r̃l

2
)
ul

f − ul
i

∆t

(I − r̃l

2
)

rl

∆t


)





= sλm vtm. (26)

It is now clear that the work done by the discretized constraint forces vanishes if vtm = 0. In
summary, discretization (25), together with the constraint vtm = 0, leads to the vanishing of
the work done by the forces of constraint. This energy preserving formulation can be readily
extended to an energy decaying formulation by following the steps outlined in [21].

6 Computational strategy

The effective use of the continuous friction law (10) presents several challenges. Clearly, the
characteristic velocity v0 appearing in (10) must be carefully selected: if v0 is too small, a
near discontinuity is recovered, and if v0 is too large, erroneous predictions will result because
the value of the friction coefficient is incorrect over a wide range of relative velocities. In
the numerical examples presented in section 7, the value of v0 was set at about 1% of the
maximum relative tangential velocity observed during the simulation.

To be fully effective, the continuous friction law must be used in conjunction with an
automated time step size selection procedure. Indeed, as the norm of the relative velocity
approaches v0, a small enough time step size must be selected so that the subsequent changes
in relative velocity are small compared to v0. In this work, a simple strategy was used: when
|vt| becomes smaller than 3v0, the time step size ∆tnew for the next time step is selected
in such a way that the estimated change in relative velocity ∆vt ≈ v0/10. A simple linear
extrapolation based on the previous time step size ∆told and corresponding relative velocity
vtold was found to predict ∆vt with sufficient accuracy.

According to Coulomb’s classical friction law, rolling starts when the relative velocity
vanishes and condition (9) holds. In this work the rolling constraint (23) was enforced when
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the relative velocity vt becomes smaller than v0/2. The Lagrange multiplier associated with
this non-holonomic constraint is equal to the static friction force. The rolling constraint
remains in force for as long as condition (9) holds. If it is no longer satisfied, the time step
is rejected and restarted using the continuous friction law. The activation of the rolling
constraint, i.e. the slipping to rolling transition, did not upset the time integration process.
However, the de-activation of the constraint, i.e. the rolling to slipping transition, is more
critical because a non vanishing relative velocity suddenly appears, corresponding to a large
acceleration. If convergence failed, the time step size was halved until convergence was
achieved.

An automated time step size selection procedure developed in [21] was used to obtain
accurate solutions in an efficient manner. The error estimate used in the procedure is based
on system total energy considerations. The smallest time step size required by the various
adaptivity strategies was used to proceed with the simulation.

7 Numerical examples

7.1 Locking of a spring loaded pin in a slot

The first numerical example deals with the locking of a spring loaded pin in a slot as is
depicted in fig. 3. As the beam rotates under the effect of the applied tip load, the spring
loaded pin rotates in the locking mechanism which consists of a cavity with a deep slot. Due
to friction forces, the pin is captured in the slot and locks the beam in a vertical position.
The beam of length L = 2.4 m is pinned to the ground at point R by means of a revolute
joint. The polar moment of inertia of the joint is IR = 0.02 kg.m2. A rigid body of mass
MA = 40.0 kg and polar moment of inertia IA = 1.0 kg.m2 is attached at the free end of
the beam which is modeled with four cubic beam elements. The physical properties of the
beam are given as the first set in table 1. A pin of length l = 0.162 m is connected to
the revolute joint through a prismatic joint allowing axial motion of the pin. A spring of
constant ks = 4.0 kN/m and pre-stretched of ∆ = −0.1 m is located in the prismatic joint.
The physical properties of the pin are given as the first set in table 1. The pin is modeled by
two cubic beam elements and a rigid body is attached to its tip. This rigid body has a mass
MB = 50.0 g, a polar moment of inertia IB = 1.0 g.m2, and its outer shape is defined by a
Bézier [24] curve which control polygon is defined in Table 2. The pin assembly is located
inside a stationary cavity which inner shape is defined by a cubic B-spline [24] curve which
control polygon is given in Table 3.

The simulation is started from the static equilibrium configuration of the preloaded pin
contacting the cavity at point B. The contact forces are given by a linear model F n = c0 a,
where a is the approach, and c0 = 2.0 GPa.m. Two different simulations will be presented.
Case 0 is a reference case for which friction effects are neglected. For case 1, friction effects are
modeled using the continuous friction law (10), with a kinetic friction coefficient µk = 0.30,
and v0 = 4.0 mm/sec. Rolling was not allowed. The beam is subjected to a tip vertical load
F (t) with the following schedule

F (t) =

{
250 (1− cos 2πt) N t ≤ 1 sec;

0 t > 1 sec.
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Fig. 4 shows the beam tip displacement. In the absence of friction forces (i.e. case 0),
the pin is not captured by the slot and the beam continues its counter-clockwise rotation.
Hence, the simulation was stopped after 1.8 sec, at which time the beam has rotated by
more than 180 degrees. For case 1, the friction forces cause the pin to remain in the slot and
once captured, the beam oscillates back and forth about a vertical position. This behavior
is best seen on fig. 5 which depicts the history of the location of the contact point. For case
0, the pin reaches the bottom of the slot at time t ≈ 1.2 sec then rapidly clears the slot. For
case 1, the pin first reaches the bottom of the slot at time t ≈ 1.6 sec but does not clear the
slot, returning to the bottom at times t ≈ 2.5 and 3.5 sec.

The beam mid-point axial and shearing forces are depicted in fig. 6. The large axial
force is due to the centrifugal effects associated with the angular velocity of the beam. The
shear force presents a first peak as the pin is moving toward the slot, followed by two very
high peaks resulting from the pin coming to a halt against the nearly vertical walls of the
slot. Fig. 7 shows the beam mid-point bending moment. High frequency vibrations are
observed for case 0, due to the absence of any energy dissipation mechanism. For case 1,
high frequency vibrations appear after the first motion reversal due to the impulsive nature
of this phenomenon.

The corresponding results for the pin mid-point forces, and bending moment are presented
in figs. 8, and 9, respectively. Finally, fig. 10 shows the normal contact force. For case 0 this
contact force is approximately equal to the elastic force in the prismatic joint spring and
remains small at all times. The contact forces for case 1 are one order of magnitude larger
than those observed in case 0, due to the large bending of the pin induced by the friction
forces.

7.2 Locking mechanism

The second example deals with a locking mechanism consisting of a cam and a cantilevered
beam, as shown in fig. 11. As the cam slowly rotates to a vertical position, it contacts the
body placed at the beam mid-span. The upward thrust imparted by the cam on the beam
creates elastic deformations and subsequent vibrations in the beam, resulting in contact
involving a complex combination of friction and rolling. The beam has a length L = 2.4 m;
its physical properties are defined in the first set of table 1; and it is modeled with eight cubic
beam elements. A rigid body of mass MT = 40 kg is attached at its free end. Another rigid
body with a mass MP = 4 kg is attached at the beam mid-span location and the outer shape
of this body is defined by a Bézier [24] curve which control polygon is defined in Table 4.

The cam is supported by a pinned beam of length l = 0.3 m and is modeled with two
cubic beam elements. Its physical properties are defined in the second set of table 1. A rigid
body with a mass Mi = 4 kg is attached at the beam tip and the outer shape of this body
is defined by the Bézier control polygon given in Table 5. The angular motion of the cam is
prescribed as

Φ(t) =

{
30◦(1 + cos πt) t ≤ 1 sec;

0 t > 1 sec.

The contact forces are given by the Hertz model F n = c1 a3/2, where a is the approach, and
c1 = 20.0 GPa.

√
m.
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Three different simulations will be presented. Case 0 is a reference case for which friction
effects are neglected. For case 1, friction effects are modeled using the continuous friction
law (10), with a kinetic friction coefficient µk = 0.30, and v0 = 2.5 mm/sec. Rolling was not
allowed. Finally, case 2 is identical to case 1, except that the rolling constraint was imposed
when the relative tangential velocity became smaller that v0/2, and the coefficient of static
friction was µs = 0.30.

The tip- and mid-point transverse displacements of the beam are depicted in fig. 12. As
the cam approaches the vertical position, the beam is pushed up. For times t > 1 sec, the cam
remains in the vertical position; the mid-span deflection remains nearly constant, whereas
the beam tip oscillates due to dynamic effects. Predictions are in close agreement for all three
cases, except that the friction forces in cases 1 and 2 provide a damping mechanism that is
absent in case 0. For times t < 1 sec, a non vanishing relative tangential velocity results
from the prescribed motion of the cam, no rolling occurs. For times t > 1 sec, the relative
motion and tangential velocity of the two bodies are driven by the beam’s oscillations and
remain small. The motion consists of a succession of 7 distinct rolling events separated by
slipping. The extent of the rolling events is indicated by the thick horizontal lines appearing
in fig. 12.

Fig. 13 shows the driving torque required to prescribe the desired motion of the cam. For
times t < 1 sec, the required torque is significantly higher for cases 1 and 2 as compared to
case 0, due to the presence of the friction force. For times t > 1 sec, the torque settles to
a nearly constant value of about −1.0 kN.m for case 0. This contrasts with the predictions
for cases 1 and 2 which exhibit large amplitude oscillations associated with the successive
rolling and sliding events.

The bending moments at the root of the beam and cam are depicted in fig. 14. Fig. 15
shows the history of the normal contact force. The results presented thus far show excellent
correlation between cases 1 and 2, proving that the continuous friction law (10) is indeed
capable of accurately modeling the present problem that involves rolling, although the rolling
constraint is not explicitely enforced in case 1. However, the difference between cases 1 and
2 is apparent in fig. 16 that depicts the work done by the friction forces. For case 1, the
friction forces are dissipative even when the relative velocity becomes very small, whereas for
case 2, the work done by the static friction force during the rolling events vanishes exactly,
as implied by (26) together with the constraint vtm = 0.

Another difference between cases 1 and 2 is the required computational effort. Fig. 17
shows the history of the time step size during the simulation. During the rolling events,
much smaller time steps are required for case 1 because sharp variations in friction force are
implied by the continuous friction law (10) at small relative velocities.

7.3 Cam contact with rolling

The last example deals with the interaction between two cams supported by elastic beams,
as shown in fig. 18 which depicts the unstressed configurations of the beams. As the leftward
motion of beam B is prescribed, the interaction between the two cams again involves friction
and rolling. Beam A has a length LA = 1.1 m, is clamped at point L, and its physical
properties are defined in the first set of table 1. A rigid body (body A), of mass MA = 4.0 kg
and polar moment of inertia IA = 0.02 kg.m2 is rigidly connected to the free end of the
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beam which is modeled with four cubic beam elements. The outer shape of the rigid body
is defined by a Bézier [24] curve which control polygon is defined in Table 6.

Beam B has a length LB = 1.2 m and is connected to a prismatic joint at point R. At
point B, it is attached to a rigid body (body B) by means of a revolute joint including a
torsional spring of constant ks = 10+12 N.m/rad, i.e. the rigid body is clamped to the tip of
the beam. The two beams have identical physical properties and mesh, and the the two rigid
bodies are mirror images of one another, as shown in fig. 18. There is an offset d = 0.1 m
between the axes of the two beams. The configuration shown in fig. 18 corresponds to the
unstressed position of the beams. All simulations were started from the equilibrium state of
the system when both cams are in contact at a point. The contact forces are given by the
Hertz model F n = c1 a3/2, where a is the approach, and c1 = 20.0 GPa.

√
m. The relative

displacement ∆(t) of the prismatic joint is prescribed as follows

∆(t) =

{
0.14 (1− cos 4πt) m t ≤ 0.25 sec;

0 t > 0.25 sec.

Three different simulations will be presented. Case 0 is a reference case for which friction
effects are neglected. For case 1, friction effects are modeled using the continuous friction
law (10), with a kinetic friction coefficient µk = 0.30, and v0 = 4.0 mm/sec. Rolling was not
allowed. Finally, case 2 is identical to case 1, except that the rolling constraint was imposed
when the relative tangential velocity became smaller that v0/2, and the coefficient of static
friction was µs = 0.30.

Fig. 19 shows the transverse displacements of beams A and B which are near mirror
images of each other as the two beam slide past each other. The predictions are nearly
identical for all three cases. The motion involves both sliding and rolling, and the extent of
the rolling events is indicated by the thick horizontal lines appearing in fig. 19. Note the very
short (0.005 sec) rolling event at the beginning of the simulation, and the extensive rolling
event from time t = 0.35 sec to the end of the simulation. The driving force required to
prescribe the desired motion of beam B is depicted in fig. 20. Much lower forces a observed
for case 0 since there are no friction forces to overcome. Cases 1 and 2 are in close agreement
up to time t = 0.35 sec, at which time rolling starts for case 2. If rolling is allowed (case
2), the friction force remains nearly constant, and so does the driving force. On the other
hand, if rolling is not allowed (case 1), the driving force slowly decreases and asymptotically
reaches case 0 predictions. In analogy to material constitutive behavior, this phenomenon
corresponds to the relaxation of internal stresses (friction forces): after an infinite relaxation
time, the system comes back to a stress (friction forces) free state. This clearly underlines
a shortcoming of the continuous friction law (10) which is unable to properly deal with the
present rolling situation.

The normal contact force is depicted in fig. 21. Here again, the differences between cases
1 and 2 discussed in the previous paragraph are apparent. Fig. 22 shows the point of contact
material coordinate η on bodies A and B. Note the nearly identical results obtained for all
threes cases. Indeed, rolling or relaxation of the friction forces occur with minute relative
motions, although their effects on internal forces is significant, as shown in fig. 20.

A second set of simulations was run with a torsional spring of constant ks = 50 N.m/rad
for torsional spring in the revolute joint at point B. Body B is now virtually free to rotate
about the tip of beam B. The transverse displacements of beams A and B are shown in fig. 23.
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Here again the motion involves both sliding and rolling, and the extent of the rolling event is
indicated by the thick horizontal line appearing in fig. 23. Rolling occurs from the beginning
of the simulation up to a time t ≈ 0.15 sec. The rotation of body B is depicted in fig. 24. For
cases 1 and 2, body B rotates by more than 180 degrees, whereas a rotation of 70 degrees is
predicted for case 0. This discrepancy is readily explained by the absence of friction forces in
case 0. As the rotation of body B increase, a point is reached when Coulomb’s static friction
condition (9) is no longer satisfied, and sliding starts. This results in an oscillatory motion
of body B that is rapidly damped by the friction forces.

The driving force required to prescribe the desired motion of beam B is depicted in fig. 25.
Lower forces a observed for case 0 since there are no friction forces to overcome. In fact, the
driving force for case 0 becomes negative due to the relative orientations of bodies A and B
after the rotation of body B has taken place. For case 1 and 2, note the rapid drop in driving
force after the onset of slipping and the nearly zero value of the final driving force.

The normal contact force is depicted in fig. 26. Although similar force levels are predicted
in all three cases, note the high frequency content of the response for cases 1 and 2. Fig. 27
shows the point of contact material coordinate η on bodies A and B.

8 Conclusions

This paper has presented an analysis methodology for nonlinear, flexible multi-body systems
undergoing contact involving friction and rolling. A continuous friction law was used to
model the friction forces between contacting bodies and a procedure for the enforcement of
the rolling constraint was described.

Although continuous friction laws are presumably capable of dealing with both slipping
and rolling, the numerical examples presented in this paper have underlined their possible
shortcomings. First and foremost, continuous friction laws can eliminate specific physical
phenomena implied by Coulomb’s friction law. The condition of vanishing relative velocity
between two contacting bodies is not possible: sticking or rolling are replaced by creeping
with a small relative velocity. Discrete events such as transition from slipping to rolling or
rolling to slipping are eliminated, together with the high frequency phenomena they are likely
to cause. Second, the small relative velocity present during rolling or sticking can burden
the time integration process by requiring a time step size far smaller than would normally
be required.

Consequently, it seems that friction effects in multi-body systems are best modeled
through the combination of a continuous friction law working together with the enforce-
ment of the rolling constraint. A computational strategy that coordinates these two aspects
of the problem was proposed and its effectiveness demonstrated by means of several nu-
merical examples. This work was developed within the framework of energy preserving and
decaying time integration schemes that provide unconditional stability for nonlinear, flexible
multi-body systems undergoing contact involving friction and rolling.
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Appendix A Rodrigues parameters

A common representation of finite rotations [26] is in terms of Rodrigues parameters r =
2u tan φ/2, where φ is the magnitude of the finite rotation and u the components of the unit
vector about which it takes place. The following notation is introduced

r0 = cos2 φ

2
= 1 / (1 +

rT r

4
), (A1)

and the finite rotation tensor R then write

R(r) = I + r0 r̃ +
r0

2
r̃r̃. (A2)

The relationship between angular velocities ω and time derivatives of Rodrigues parameters
is ω = H ṙ, where

H(r) = r0(1 +
1

2
r̃). (A3)

The following two decompositions of the rotation tensor are extensively used in this work

R = HH−T = H−T H, (A4)

and

R =

(
I +

r̃

2

)(
I +

r̃

2

)−T

=

(
I +

r̃

2

)−T (
I +

r̃

2

)
. (A5)
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6 Coordinates of the Bézier control polygon. . . . . . . . . . . . . . . . . . . . 25

17



List of Figures

1 Geometry of the contacting bodies. . . . . . . . . . . . . . . . . . . . . . . . 26
2 The friction force for Coulomb’s friction law (solid line), and the continuous

friction law (dashed line). µk = 0.3; F n = 1. . . . . . . . . . . . . . . . . . . 27
3 Configuration of the spring loaded pin and beam. . . . . . . . . . . . . . . . 28
4 Time history of the beam tip u1 (◦) and u2 (4) displacement components.

Case 0: solid line; case 1: dashed line. . . . . . . . . . . . . . . . . . . . . . 29
5 Time history of the contact point x1 (◦) and x2 (4) position components.

Case 0: solid line; case 1: dashed line. . . . . . . . . . . . . . . . . . . . . . 30
6 Time history of the beam mid-point axial force (◦) and shearing force (4).

Case 0: solid line; case 1: dashed line. . . . . . . . . . . . . . . . . . . . . . 31
7 Time history of the beam mid-point bending moment. Case 0: solid line; case

1: dashed line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
8 Time history of the pin mid-point axial force (◦) and shearing force (4). Case

0: solid line; case 1: dashed line. . . . . . . . . . . . . . . . . . . . . . . . . 33
9 Time history of the pin mid-point bending moment. Case 0: solid line; case

1: dashed line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
10 Time history of the normal contact force. Case 0: solid line; case 1: dashed

line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
11 Configuration of the cam and beam. . . . . . . . . . . . . . . . . . . . . . . . 36
12 Time history of tip (◦) and mid-point (2) transverse displacements. Case 0:

solid line; case 1: dashed line; case 2: dash-dotted line. . . . . . . . . . . . . 37
13 Time history of the driving torque. Case 0: solid line; case 1: dashed line;

case 2: dash-dotted line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
14 Time history of the root bending moments in the beam (2) and cam (◦). Case

0: solid line; case 1: dashed line; case 2: dash-dotted line. . . . . . . . . . . 39
15 Time history of the normal contact force. Case 0: solid line; case 1: dashed

line; case 2: dash-dotted line. . . . . . . . . . . . . . . . . . . . . . . . . . . 40
16 Time history of the work done by the friction forces. Case 0: solid line; case

1: dashed line; case 2: dash-dotted line. . . . . . . . . . . . . . . . . . . . . 41
17 Time history of the time step size. Case 0: solid line; case 1: dashed line;

case 2: dash-dotted line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
18 Cam contact with rolling: configuration of the problem. . . . . . . . . . . . . 43
19 Time history of beam A (◦) and beam B (4) tip displacements. Case 0: solid

line; case 1: dashed line; case 2: dash-dotted line. . . . . . . . . . . . . . . . 44
20 Time history of the driving force. Case 0: solid line; case 1: dashed line; case

2: dash-dotted line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
21 Time history of the normal contact force. Case 0: solid line; case 1: dashed

line; case 2: dash-dotted line. . . . . . . . . . . . . . . . . . . . . . . . . . . 46
22 Time history of the point of contact material coordinate on body A (◦) and

body B (4). Note: for clarity of the picture, the material coordinate for body
B was shifted down by 0.1. Case 0: solid line; case 1: dashed line; case 2:
dash-dotted line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

18



23 Time history of beam A (◦) and beam B (4) tip displacements. Case 0: solid
line; case 1: dashed line; case 2: dash-dotted line. . . . . . . . . . . . . . . . 48

24 Time history of the rotation of body B. Case 0: solid line; case 1: dashed line;
case 2: dash-dotted line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

25 Time history of the driving force. Case 0: solid line; case 1: dashed line; case
2: dash-dotted line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

26 Time history of the normal contact force. Case 0: solid line; case 1: dashed
line; case 2: dash-dotted line. . . . . . . . . . . . . . . . . . . . . . . . . . . 51

27 Time history of the point of contact material coordinate on body A (◦) and
body B (4). Case 0: solid line; case 1: dashed line; case 2: dash-dotted line. 52

19



Property Set 1 Set 2
Axial stiffness 44.0 MN 44.0 MN
Bending stiffness 23.0 kN.m2 0.3 MN.m2

Shearing stiffnesses 2.8 MN 14.0 MN
Mass per unit span 1.6 kg/m 1.6 kg/m
Mass moment of inertia 0.011 kg.m 0.011 kg.m

Table 1: Physical properties of the beams.
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Control x1 [m] x2 [m] Control x1 [m] x2 [m]
point point

1 0.01 0.01 2 -0.01 0.04
3 -0.05 0.00 4 -0.01 -0.04
5 0.01 -0.01

Table 2: Coordinates of the Bézier control polygon.
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Control x1 [m] x2 [m] Control x1 [m] x2 [m]
point point

1 0.10 0.10 2 0.20 0.05
3 0.20 -0.05 4 0.04 -0.05
5 0.09 -0.15 6 -0.09 -0.15
7 -0.04 -0.05 8 -0.20 -0.05
9 -0.20 0.05 10 -0.10 0.10

Table 3: Coordinates of the cubic B-spline control polygon.
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Control x1 [m] x2 [m] Control x1 [m] x2 [m]
point point

1 -0.1 0.2 2 -1.0 0.0
3 0.0 -0.3 4 1.0 0.0
5 0.1 0.2

Table 4: Coordinates of the Bézier control polygon.

23



Control x1 [m] x2 [m] Control x1 [m] x2 [m]
point point

1 -0.025 -0.025 2 0.025 -0.1
3 0.125 0.0 4 0.025 0.1
5 -0.025 0.025

Table 5: Coordinates of the Bézier control polygon.
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Control x1 [m] x2 [m] Control x1 [m] x2 [m]
point point

1 -0.2 -0.1 2 0.0 -0.2
3 0.3 0.0 4 0.0 0.2
5 -0.2 0.1

Table 6: Coordinates of the Bézier control polygon.
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Figure 1: Geometry of the contacting bodies.
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Figure 4: Time history of the beam tip u1 (◦) and u2 (4) displacement components. Case
0: solid line; case 1: dashed line.
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Figure 5: Time history of the contact point x1 (◦) and x2 (4) position components. Case
0: solid line; case 1: dashed line.
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Figure 6: Time history of the beam mid-point axial force (◦) and shearing force (4). Case
0: solid line; case 1: dashed line.
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Figure 7: Time history of the beam mid-point bending moment. Case 0: solid line; case 1:
dashed line.
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Figure 8: Time history of the pin mid-point axial force (◦) and shearing force (4). Case 0:
solid line; case 1: dashed line.
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Figure 9: Time history of the pin mid-point bending moment. Case 0: solid line; case 1:
dashed line.
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Figure 10: Time history of the normal contact force. Case 0: solid line; case 1: dashed line.
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Figure 11: Configuration of the cam and beam.
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Figure 12: Time history of tip (◦) and mid-point (2) transverse displacements. Case 0: solid
line; case 1: dashed line; case 2: dash-dotted line.
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Figure 13: Time history of the driving torque. Case 0: solid line; case 1: dashed line; case
2: dash-dotted line.
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Figure 14: Time history of the root bending moments in the beam (2) and cam (◦). Case
0: solid line; case 1: dashed line; case 2: dash-dotted line.
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Figure 15: Time history of the normal contact force. Case 0: solid line; case 1: dashed line;
case 2: dash-dotted line.
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Figure 16: Time history of the work done by the friction forces. Case 0: solid line; case 1:
dashed line; case 2: dash-dotted line.

41



1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
10

−4

10
−3

10
−2

TIME [sec]

T
IM

E
 S

T
E

P
 S

IZ
E

 [
se

c]

Figure 17: Time history of the time step size. Case 0: solid line; case 1: dashed line; case
2: dash-dotted line.
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Figure 18: Cam contact with rolling: configuration of the problem.
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Figure 19: Time history of beam A (◦) and beam B (4) tip displacements. Case 0: solid
line; case 1: dashed line; case 2: dash-dotted line.
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Figure 20: Time history of the driving force. Case 0: solid line; case 1: dashed line; case 2:
dash-dotted line.
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Figure 21: Time history of the normal contact force. Case 0: solid line; case 1: dashed line;
case 2: dash-dotted line.
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Figure 22: Time history of the point of contact material coordinate on body A (◦) and body
B (4). Note: for clarity of the picture, the material coordinate for body B was shifted down
by 0.1. Case 0: solid line; case 1: dashed line; case 2: dash-dotted line.
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Figure 23: Time history of beam A (◦) and beam B (4) tip displacements. Case 0: solid
line; case 1: dashed line; case 2: dash-dotted line.
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Figure 24: Time history of the rotation of body B. Case 0: solid line; case 1: dashed line;
case 2: dash-dotted line.
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Figure 25: Time history of the driving force. Case 0: solid line; case 1: dashed line; case 2:
dash-dotted line.
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Figure 26: Time history of the normal contact force. Case 0: solid line; case 1: dashed line;
case 2: dash-dotted line.
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Figure 27: Time history of the point of contact material coordinate on body A (◦) and body
B (4). Case 0: solid line; case 1: dashed line; case 2: dash-dotted line.
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