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Abstract

This paper focuses on the modeling of the contact conditions associated with cylindrical,

prismatic, and screw joints in flexible multibody systems. In the classical formulation these

joints are developed for rigid bodies, and kinematic constraints are enforced between the

kinematic variables of the two bodies. These constraints express the conditions for relative

translation and rotation of the two bodies along and about a body-fixed axis, and imply the

relative sliding and rotation of the two bodies which remain in constant contact with each

other. However, these kinematic constraints no longer imply relative sliding with contact

when one of the bodies is flexible. To remedy this situation, a sliding joint and a sliding

screw joint are proposed that involves kinematic constraints at the instantaneous point of

contact between the sliding bodies. For sliding screw joints, additional constraints are added

on the relative rotation of the contacting bodies. Various numerical examples are presented

that demonstrate the dramatically different behavior of cylindrical, prismatic, or screw joints

and of the proposed sliding and sliding screw joints in the presence of elastic bodies, and the

usefulness of these constraint elements in the modeling of complex mechanical systems.

1 Introduction

This paper is concerned with the dynamic analysis of flexible, nonlinear multibody systems, i.e. a
collection of bodies in arbitrary motion with respect to each other as each body undergoes large
displacements and rotations with respect to a body-fixed frame of reference. The focus is on
problems where the strains within each elastic body remain small.

The elastic bodies are modeled using the finite element method. This paper focuses on beam
elements. The location of each node of the beam is represented by its Cartesian coordinates in an
inertial frame, and the rotation of the cross-section at each node is represented by a finite rotation
tensor expressed in the same inertial frame. The kinematic constraints among the various bodies
are enforced via the Lagrange multiplier technique. Although this approach does not involve the
minimum set of coordinates, it allows a modular development of finite elements for the enforcement
of the kinematic constraints.

A distinguishing feature of multibody systems is the presence of joints which impose different
types of kinematic constraints between the various bodies of the system. An exhaustive classification

∗Multibody System Dynamics, 5, pp 251–278, 2001.

1



D

k
e1

k
e2

lk
ee 33 =

l
e1

l
e2 K

L

lk
ee 0101 =

lk
ee 0303 =

lk
ee 0202 =

LK =

1i

2i

3i

lk
uu 00 =

k
u

l
u

Reference

configuration

Deformed

configuration

Figure 1: Prismatic joint in the reference and deformed configurations.

of these joint types can be found in text books, such as [1], for instance. This paper focuses on the
modeling of cylindrical, prismatic, and screw joints. These three types of joints share the common
characteristic of allowing relative translation between two bodies, together with possible relative
rotation. In this introduction, the prismatic joint will be discussed as an example, the other two
joints will be described in the body of the paper. The prismatic joint, schematically depicted in
fig. 1, allows relative translation between two bodies, denoted body k and body l, about an axis
fixed with respect to body k, while no relative rotation is allowed between the bodies.

At first, we consider the case where body l is a rigid body. Fig. 1 depicts the prismatic joint
in the reference and deformed configurations. In the reference configuration, the prismatic joint is
defined by coincident triads Sk

0
= S l

0
, attached to points K and L, respectively, which are material

points on bodies k and l, respectively. In the deformed configuration, the orientations of triads
Sk and S l are still identical, but their origins are different: body l translated a distance ∆ with
respect to body k in the direction e k

3
= e l

3
. The first set of kinematic constraints associated with

the prismatic joint is
elT
1
u = elT

2
u = 0, (1)

and imply the orthogonality of both e l
1
and e l

2
to u = u l − u k, the vector joining points K and

L. The second set of constraints reads

ek
1
= el

1
; ek

2
= el

2
; ek

3
= el

3
, (2)

which imply identical orientations for triads Sk and S l. Finally, the relative translation of the
bodies is ∆ = elT

3
u, the projection of vector u along e l

3
. It is important to note that although

these constraints are expressed in terms of the kinematic variables at points K and L, they imply
the sliding of body l on body k at point K, when body l is rigid.

The situation is markedly different when body l is flexible, as shown in fig. 2. If conditions (1)
and (2) are enforced, body l is no longer sliding on body k at point K, i.e. contact between the
bodies is no longer enforced. In actual systems, the piece of hardware corresponding to the prismatic
joint implies the sliding of body l on body k with contact at point K at all times, as depicted in
fig. 3. In fact, in the presence of flexible bodies, such a joint is more accurately described as a
sliding joint.

Due to the flexibility of body l, the kinematic variables at material points K and L are no
longer related by conditions (1) and (2). Rather, constraint conditions must be enforced between
the kinematic variables at point K of body k, and the kinematic variables at the material point of
body l which is in contact with body k at a given instant. Clearly, the kinematic constraints, eq. (1)
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Figure 2: Prismatic joint with a flexible body.
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Figure 3: Sliding joint with a flexible body.

and (2) associated with the classical formulation of prismatic joints, and the kinematic constraint
associated with sliding in the presence of flexible bodies are fundamentally different and will lead to
sharply different dynamic responses of the system. Although the above discussion has focused on
prismatic joints, it is clear that identical remarks can be made concerning the classical formulation
of cylindrical and screw joints, and about their inadequacy to model sliding behavior in the presence
of flexible bodies.

The nonlinear holonomic constraints associated with all the joints described in this work are
formulated within the framework of the energy preserving [2, 3, 4, 5, 6] and decaying schemes [7, 8,
9, 10, 11, 12, 13, 14, 15] for multibody sytems. In these schemes, unconditional stability is achieved
for nonlinear elastic multibody systems by combining two features: an energy preservation or decay
statement for the elastic bodies of the system, and the vanishing of the work done by the forces of
constraint. First, a discretization process for flexible members of the system is developed that pre-
serves the total mechanical energy of the system at the discrete solution level. Then, a discretization
process is proposed for the forces of constraint associated with the holonomic and non-holonomic
constraints imposed on the system. Forces of constraint are discretized in a manner that guarantees
the satisfaction of the nonlinear constraint manifold, i.e. the constraint condition will not drift.
At the same time, the discretization implies the vanishing of the work performed by the forces of
constraint at the discrete solution level. Consequently, the discrete energy conservation laws proved
for the flexible members of the system are not upset by the introduction of the constraints. The
resulting Energy Preserving (EP) scheme provides nonlinear unconditional stability for nonlinear,
flexible multibody systems. However, it clearly lacks the indispensable high frequency numerical
dissipation required to tackle realistic engineering problems [6].

In a second phase, a new discretization, closely related to that of the EP scheme, is developed
for the flexible components of the system. This new discretization implies a discrete energy decay
statement that results in high frequency numerical dissipation. The discretization of the forces of
constraint is also closely related to that of the EP scheme and presents identical properties: no drift
of the constraint conditions and vanishing of the work they perform. Here again, the introduction
of constraints does not upset the discrete energy decay law. The resulting Energy Decaying (ED)
scheme is therefore ideally suited for the simulation of nonlinear, flexible multibody systems with
sliding joints whose dynamic response varies very rapidly due to the complex nature of the constraint
conditions and to the moving contact point in sliding joints. An automated time step size selection
procedure developed in [12] is used to obtain accurate solutions in an efficient manner.

This paper is organized in the following manner. The classical formulation of prismatic joints
is described in section 3 and is followed in section 4 by the formulation of cylindrical and screw
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joints which combine simpler joints, the universal and revolute joints. In section 5, the formulation
of a simple, yet effective sliding joint is proposed. This joint involves the sliding of a node of a
body along a flexible beam element and the rotations of the two bodies are not constrained in any
manner. The sliding screw joint presented in section 6 involves an additional constraint on the
relative rotation of the two bodies. Numerical examples are presented in section 7 that illustrate
the sharp difference between the dynamic response of classical prismatic or screw joints and of the
proposed sliding or sliding screw joints in the presence of flexible bodies.

2 Kinematic notation and conventions

The kinematic description of bodies and joints in their reference and deformed configurations will
make use of three orthogonal triads. First, an inertial triad is used as a global reference for the
system; it is denoted SI with unit vectors i1, i2, and i3. A second triad S0, with unit vectors e01, e02,
and e03 is attached to the body and defines its orientation in the reference configuration. Finally,
a third triad S∗ with unit vectors e1, e2, and e3 defines the orientation of the body in its deformed
configuration.

Let u0 and u be the displacement vectors from SI to S0, and S0 to S∗, respectively, and R0 and
R the rotation tensors from SI to S0, and S0 to S∗, respectively. In this work, all vector and tensor
components are measured in either SI or S∗.

3 The prismatic joint

Consider two bodies denoted with superscripts (.)k and (.)l, respectively, linked together by a
prismatic joint, as depicted in fig. 1. In the reference configuration, the prismatic joint is defined
by two coincident triads Sk

0
= S l

0
. In the deformed configuration, no relative rotations are allowed

and the corresponding triads are allowed to translate with respect to each other in such a way that
e k
3

= e l
3
. This condition implies the orthogonality of both e l

1
and e l

2
to vector u = u l−u k which

joins the origins of the two triads. These two kinematic constraints are

Cα = elTα u = 0, (3)

with α = 1 and 2, respectively. Of course, in the deformed configuration, the orientation of
the two triads is still identical; this constraint is readily enforced within the framework of finite
element formulations by Boolean identification of the corresponding degrees of freedom. The relative
displacement ∆ of the prismatic joint is defined by adding a third constraint

C3 = elT
3
u−∆ = 0, (4)

which expresses the relative displacement of the bodies as the projection of u along e l
3
. As discussed

in [12], holonomic constraints are enforced by the addition of a constraint potential λ C, where λ
is the Lagrange multiplier. The forces of constraint F c corresponding to eqs. (3) or (4) are readily
obtained as

δCλ =




δuk

δul

δψl

δ∆




T 


− λ elα
λ elα
λ ẽlα u

− λ


 =




δuk

δul

δψl

δ∆




T

F
c, (5)

where the virtual rotations are defined as δ̃ψ = (δR) RT , the virtual rotation vector is then denoted
δψ; α = 1, 2, and 3 for the three constraints, respectively; and the last line in the constraint force
expression is omitted for the first two constraints. To obtain unconditionally stable schemes for
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constrained systems, these forces of constraint must be discretized in time while enforcing that the
work they perform vanishes exactly. To this effect, the difference between the constraint value in
the final and initial configurations, denoted with subscripts ()f and ()i, respectively, is evaluated
below

Cf − Ci = (elTαf uf −∆f)− (elTαi ui −∆i). (6)

The incremental rotation tensor R that rotates the unit vectors elαi to elαf is represented with
Rodrigues parameters r, see Appendix A. The use of identities (A6) then implies

elαf = R elαf = (I +
r̃

2
) elαm; elαi = I elαi = (I −

r̃

2
) elαm. (7)

Introducing these results into eq. (6) then yields

Cf − Ci = (uTf − uTi ) e
l
αm + rT ũTm elαm, (8)

where

elαm =
elαf + elαi

2
; um =

uf + ui
2

. (9)

This result suggests the following time discretization of the constraint forces

F
c
m =




− sλm elαm
sλm elαm
sλm ẽ l

αm um
− sλm


 , (10)

where s is a scaling factor for the unknown, mid-point value of the Lagrange multiplier λm. In view
of eq. (8), the work done by the constraint forces during the time step is ∆Wc = sλm (Cf − Ci).
Clearly, this work vanishes if Cf −Ci = 0. In order to avoid the drift phenomenon, it is preferable to
enforce the condition Cf = 0 at each time step. Consequently, the forces of constraint are discretized
in time in a manner that guarantees the satisfaction of the nonlinear constraint manifold, i.e. the
constraint condition will not drift. At the same time, the discretization implies the vanishing of
the work performed by the forces of constraint at the discrete solution level. Consequently, the
discrete energy conservation laws proved for the flexible members of the system are not upset by
the introduction of the constraints. This energy preserving formulation can be readily extended to
an energy decaying formulation by following the steps outlined in section 4.3 of [12].

The discretized forces of constraint, eq. (10), can be linearized to yield the Jacobian matrix of
the constraints. Within the framework of the finite element formulation, this equivalent stiffness
matrix is assembled with all other stiffness contributions of the system. The Lagrange multipliers
are then explicitely computed at each time step.

4 The cylindrical and screw joints

The cylindrical and screw joints can be formulated as combinations of simpler joints, the universal,
revolute and prismatic joints. Hence, the formulations of the universal and revolute joints will be
discussed first.

4.1 The universal joint

Consider two bodies denoted with superscripts (.)k and (.)l, respectively, linked together by a
universal joint, as depicted in fig. 4. In the undeformed configuration, the universal joint is defined
by two triads Sk

0
and S l

0
with a common origin, and e k

03
is orthogonal to e l

03
. The kinematic
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Figure 4: Universal joint in the undeformed and deformed configurations.

constraint associated with a universal joint implies the orthogonality of the corresponding vectors
in the deformed configuration

C = ekTα elβ = gαβ = 0, (11)

where α = β = 3. Here again, these holonomic constraints are enforced by the addition of a con-
straint potential λ C, where λ is the Lagrange multiplier. The forces of constraint F c corresponding
to eqs. (11) are

δC · λ =

[
δψk

δψl

]T
·

[
λ hαβ

− λ hαβ

]
=

[
δψk

δψl

]T
· F

c, (12)

where
hαβ = ẽ k

α elβ. (13)

To obtain unconditionally stable schemes for constrained systems, these forces of constraint must
be discretized in time while enforcing that the work they perform vanishes exactly. To this effect,
the difference between the constraint value in the final and initial configurations is evaluated

Cf − Ci = gαβf − gαβi = ekTαf e
l
βf − ekTαi e

l
βi. (14)

Introducing identities (7) then yields

Cf − Ci = (rkT − rlT ) ẽkαm elβm = (rkT − rlT ) hαβm. (15)

This result suggests the following discretization of the constraint forces

F
c
m =

[
sλm hαβm

− sλm hαβm

]
. (16)

This discretization together with the constraint Cf = 0 leads to the vanishing of the work done by
the forces of constraint.

4.2 The revolute joint

Consider two bodies denoted with superscripts (.)k and (.)l, respectively, linked together by a
revolute joint, as depicted in fig. 5. In the undeformed configuration, the revolute joint is defined
by coincident triads Sk

0
= S l

0
. In the deformed configuration, no relative displacements are allowed
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Figure 5: Revolute joint in the undeformed and deformed configurations.

and the corresponding triads are allowed to rotate with respect to each other in such a way that
e k
3

= e l
3
. This condition implies the orthogonality of e k

3
to both e l

1
and e l

2
. These two kinematic

constraints are both given by eq. (11) with α = 3, β = 1, and α = 3, β = 2, respectively, and are
enforced in the manner described in the previous section. The relative rotation φ between the two
bodies is defined by adding to the revolute joint formulation a third constraint

C = gαα sinφ+ gαβ cosφ = 0, (17)

where α = 1 and β = 2. The corresponding forces of constraint F c are readily obtained

δC · λ =



δψk

δψl

δφ




T

·




λ (hαα sin φ+ hαβ cosφ)
− λ (hαα sin φ+ hαβ cosφ)

λ (gαα cosφ− gαβ sinφ)


 =



δψk

δψl

δφ




T

· F
c. (18)

The difference between the constraint value in the final and initial configurations is evaluated

Cf − Ci = (gααf sinφf + gαβf cos φf)− (gααi sinφi + gαβi cosφi). (19)

Next, the following trigonometric identity is introduced

sin φf =
sinφf + sin φi

2
+

sinφf − sinφi

2
= sinm φ+

1

2

sin
φf − φi

2
φf − φi

2

[
cos

φf + φi

2

]
(φf − φi)

= sinm φ+
Sm

2
cosφm (φf − φi). (20)

One also finds sin φi = sinm φ − (Sm/2) (cos φm) (φf − φi), and similar relationships hold for the
cosine function to yield

Cf − Ci = (gααf − gααi) sinm φ+ (gαβf − gαβi) cosm φ

+ (gααm cosφm − gαβm sinφm) Sm (φf − φi). (21)

The terms in the two first parentheses are identical to eq. (14), and can be treated in a similar
manner to yield

Cf − Ci = (rkT − rlT ) (sinm φ hααm + cosm φ hαβm)

+ (φf − φi) (gααm cosφm − gαβm sinφm) Sm, (22)
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where gαβm = (gαβf + gαβi)/2. This result suggests the following discretization of the constraint
forces

F
c
m =




sλm (hααm sinm φ+ hαβm cosm φ)
− sλm (hααm sinm φ+ hαβm cosm φ)

sλm (gααm cosφm − gαβm sinφm)


 , (23)

This discretization together with the constraint Cf = 0 leads to the vanishing of the work done by
the forces of constraint.

4.3 The cylindrical joint

The cylindrical joint formulation is readily obtained by superposing the displacement constraints,
eqs. (3) and (4), of the prismatic joint with the rotation constraints, eqs. (11) and (17), of the
revolute joint. The two relative motions at the joint are the relative displacement ∆ and the
relative rotation φ.

4.4 The screw joint

Finally, the formulation of the screw joint is identical to that of the cylindrical joint, but a linear
constraint is added between the relative displacement and rotation as

C = ∆− p φ = 0, (24)

where p is the pitch of the screw.

5 The sliding joint

Consider two bodies denoted with superscripts (.)k and (.)l, respectively, linked together by a sliding
joint, as depicted in fig. 6. Body k is a flexible beam element whose displacement field is interpolated
from nodal quantities, using traditional finite element techniques. In the reference configuration,
the coordinates of a point on the beam are

uk
0
(η) = hα(η) ukα

0
, (25)

where ukα
0

are the coordinates of the nodal positions in the reference configuration, hα(η) the shape
functions used in the discretization of the beam element, η ∈ [0, 1] a non-dimensional parameter
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indicating the location of a material particle along the beam axis in the reference configuration,
and α an integer varying from 0 to N , the number of nodes in the beam element. Summation over
all nodes is implied by repeated α indices. The formulation of nonlinear beam elements is detailed
in [12]. Body l can be a rigid or flexible element of the system. The position vector of a node point
of this body is denoted ul

0
in the reference configuration.

After deformation, the position vector of a point on the beam becomes

P k(η) = hα(η) (ukα
0

+ ukα), (26)

where ukα are the nodal displacement vectors. Similarly, the position vector of the node on body l
is

P l = ul
0
+ ul, (27)

where ul is the nodal displacement vector. The kinematic constraint associated with the condition
of body l freely sliding over the flexible beam is

C = P k(η)− P l = 0. (28)

The parameter η which determines the location of contact between bodies k and l is, of course,
a time-varying unknown of the problem. Here again, this constraint is enforced via the Lagrange
multiplier technique. The corresponding forces of constraint F c are

δCTλ =



δukα

δη
δul




T 


hα λ
hα ′ (ukα

0
+ ukα)T λ

− λ


 =



δukα

δη
δul



T

F
c, (29)

where (.)′ denotes a derivative with respect to η. To obtain unconditionally stable schemes for
constrained systems, these forces of constraint must be discretized while enforcing that the work
they perform vanishes exactly. To this effect, the difference between the constraint value in the
final and initial configurations is evaluated

Cf − Ci =
[
hαf (ukα

0
+ ukαf )− (ul

0
+ ulf)

]
−
[
hαi (ukα

0
+ ukαi )− (ul

0
+ uli)

]
, (30)

where hαf = hα(ηf ). The following indentities are introduced

hαf =
hαf + hαi

2
+
hαf − hαi

2
= hαm +

hαf − hαi
2

; hαi = hαm −
hαf − hαi

2
, (31)

to yield

Cf − Ci = (ukαf − ukαi ) hαm + (ηf − ηi)
hαf − hαi
ηf − ηi

(ukα
0

+ ukαm ) + (ulf − uli). (32)

This result suggests the following discretization of the constraint forces

F
c
m =




hαm sλm
hαf − hαi
ηf − ηi

(ukα
0

+ ukαm )T sλm

− sλm


 , (33)

This discretization together with the constraint Cf = 0 leads to the vanishing of the work done by
the forces of constraint.
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6 The sliding screw joint

It should be noted that the kinematic constraints associated with the sliding joint do not involve
the rotational degrees of freedom of bodies k and l. In some cases, the rotation of body l might be
constrained to match the twist of the beam, body k. Let the unit vectors ek

2
and ek

3
define the plane

of the cross section of the beam, and elα define a triad attached to body l, as depicted in fig. 7. If
the rotation of body l is constrained to follow the twist of beam k, the following constraint must
be enforced

C = ekT
2
(η) el

3
= 0. (34)

This constraint is similar to that corresponding to the universal joint, eq.(11). However, an impor-
tant difference exists: the unit vector ek

2
is a function of η, i.e. as body l slides along the beam k,

it must rotate to match the local twist of the beam at the instantaneous point of contact whose
location is defined by η. In other words, this constraint is equivalent to a universal joint attached to
body l and to a point sliding along body k. The forces of constraint F c corresponding to eqs. (34)
are

δC · λ =



δψkα

δη

δψl



T 


λ hαẽ k el

λ elT ẽ k κ
λ ẽl ek


 =



δψkα

δη

δψl



T

F
c, (35)

where κ̃ = R′RT is the beam curvature vector, and the notation ()′ indicates a derivative with
respect to η. To obtain unconditionally stable schemes for constrained systems, these forces of
constraint must be discretized while enforcing that the work they perform vanishes exactly. To this
effect, the difference between the constraint value in the final and initial configurations is evaluated

Cf − Ci = ekTf (ηf) e
l
f − ekTi (ηi) e

l
i, (36)

where the subscripts ()2 and ()3 have been dropped for simplicity. First, we introduce identity (7)
for vectors elf and eli to find

Cf − Ci = rlT ẽlm ekmm + elTm [ekf (ηf)− eki (ηi)]. (37)
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where ekmm = ekf (ηf) + eki (ηi). Next, the same identities are introduced for vectors ekf and eki

Cf − Ci = rlT ẽlm ekmm + elTm (ekmf − ekmi) + elTm
1

2
[r̃f e

k
mf + r̃i e

k
mi], (38)

where ekmf = [ekf(ηf ) + eki (ηf )]/2 and ekmi = [ekf (ηi) + eki (ηi)]/2, and ri = r(ηi), rf = r(ηf) are the
Rodrigues parameters measuring the beam incremental rotations at ηi and ηf , respectively. This
result suggests the following discretization of the constraint forces

F
c
m =




− sλm
[
ẽkmf h

α
f + ẽkmi h

α
i

]
/2 elm

sλm elTm
ekmf − ekmi

ηf − ηi
sλm ẽlm ekmm


 , (39)

This discretization together with the constraint Cf = 0 leads to the vanishing of the work done by
the forces of constraint.

7 Numerical examples

All the numerical examples presented in this sections used the energy decaying scheme described
in [11, 12]. This scheme provides unconditional stability for nonlinear multibody systems involving
both prismatic and sliding joints. An automated time step size selection procedure developed in [12]
was used to obtain accurate solutions in an efficient manner.

7.1 The beam slider problem

The first numerical example is the beam slider problem that will be used to illustrate the dramatic
difference between prismatic and sliding joints when flexible bodies are involved. Fig. 8 depicts
the problem configuration: a flexible beam of length L = 2.4 m is pinned at point R by means
of a spherical joint, and carries a tip body of mass MT = 40 Kg and moments of inertia I11 =
2I22 = 2I33 = 0.45 Kg.m2. A driver of height h = 1.6 m is pinned at point A by means of a
revolute joint with its axis of rotation along ı3 and is connected to the beam at point B. Two
cases will be investigated, denoted cases 1 and 2, respectively. The driver is connected to the beam
by means of a sliding joint for case 1, and a prismatic joint connected to a revolute joint with its
axis of rotation along i3 for case 2. The relative translation at the sliding joint is prescribed as
η = 0.5− 0.25 cos 2πt, whereas that of the prismatic joint is prescribed as ∆ = 0.6 (1− cos 2πt) m.
Note that the prescribed motions for cases 1 and 2 are identical, the different expressions for ∆ and
η reflect their different definitions. The beam and driver were modeled with 12 and 3 cubic beam
elements, respectively. The rather fine mesh used for the beam is necessary because the sliding joint
corresponds to a point load traveling along the beam. Although this fine mesh was not required
for case 2 which converged with 4 elements only, the same fine mesh was used for both cases. The
physical properties of the beam are: axial stiffness EA = 44.0MN , bending stiffnesses EI22 = 300.0
and I33 = 23.0 KN.m2, torsional stiffness GJ = 28.0 KN.m2, shearing stiffnesses GK22 = 2.8 and
GK33 = 14.0 MN , mass per unit span m = 1.6 Kg/m, and mass moment of inertia per unit span
I22 = 1.0 and I33 = 11.0 mg.m. The properties of the driver are identical to those of the beam
except for the following quantities: bending stiffnesses EI22 = 23.0 and I33 = 300.0 KN.m2, and
shearing stiffnesses GK22 = 14.0 and GK33 = 2.8 MN .

The system was simulated for a period of 2 sec. Figs. 9 and 10 depict the beam tip vertical
displacement and rotation, respectively. Note the sharp difference between the two cases; for case
1 a very significant high-frequency content is apparent in the response. The beam mid-span axial
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Figure 9: Time history of beam vertical tip dis-
placement u2. Case 1: solid line; case 2: dashed
line.
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Figure 10: Time history of beam tip rotation
Φ3. Case 1: solid line; case 2: dashed line.
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Figure 11: Time history of beam mid-span axial
force F1. Case 1: solid line; case 2: dashed line.

force is shown in fig. 11. The axial force for case 1 is about 20 times larger than that in case 2,
and peaks at times t = 0.5 and 1.5 sec, i.e when the slider contacts the beam at its mid-span. This
phenomenon is absent for case 2 since the prismatic joint remains attached to the fixed point B
on the beam, i.e. the interaction force between the driver and the beam does not slide along the
beam.

Fig. 12 depicts the beam mid-span bending moment time history. The peak value for case 1 is
about 30% higher than for case 2. It is interesting to note the variable frequency response for case
1: the period of the response around time t = 1 sec is about twice that of the response at time
t = 1.5 sec. This is due to the variable geometry of the problem in the presence of the sliding joint:
the driver provides a point support to the beam at a point that moves along its span. In contrast,
the frequency of the response for case 2 is nearly constant because the driver remains attached to
the beam at the fixed point B. The same remarks can be made about the driver mid-span axial
force shown in fig. 13. The peak axial force is about four times larger for case 1.

Finally, the force required to drive the sliding or prismatic joint is depicted in fig. 14. The same
remark apply here again, and the peak value of the driving force is about six times larger for case
1.
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Figure 12: Time history of beam mid-span
bending moment M3. Case 1: solid line; case
2: dashed line.
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Figure 13: Time history of driver mid-span axial
force F1. Case 1: solid line; case 2: dashed line.
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Figure 14: Time history of the driving force. Case 1: solid line; case 2: dashed line.

7.2 The twisted beam slider problem

The configuration of the second numerical example is identical to that the first example, except for
one important difference: the beam is now pre-twisted with a constant twist rate k1 = 0.4363 rad/m.
In case 1, the driver is connected to the beam by means of a sliding screw joint which rotates
according to the beam twist. The relative translation at the sliding screw joint is prescribed as
η = 0.5 − 0.25 cos 2πt. For case 2, the driver is connected to the beam by means of a screw
joint followed by a universal joint. The relative translation of the screw joint is prescribed as
∆ = 0.6 (1− cos 2πt) m, and the pitch of the screw is p = 1/k1, i.e. is matches the pre-twist of the
beam. The universal joint transfers the sole relative rotation of the screw joint to the driver. The
system is simulated for a total of 3 sec.

Due to the presence of the sliding screw joint moving along a twisted beam, the response of
the system is now three-dimensional, as can be seen in figs. 15 and 16, which depict the beam tip
transverse displacement and twist, respectively. Here again the displacements and rotations for case
1 are found to be much larger than for case 2, up to 2.5 times for the tip twist. The responses for
the beam mid-span axial forces shown in fig. 17 differ in both amplitude and frequency for cases 1
and 2.

Due to the three-dimensional nature of the motion, a large out-of-plane transverse shearing force
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Figure 15: Time history of the beam tip out-of-
plane displacement u3. Case 1: solid line; case
2: dashed line.

0 0.5 1 1.5 2 2.5 3
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

TIME [sec]

B
E

A
M

 T
IP

 R
O

T
A

T
IO

N
S

  Φ
1 [r

ad
]

Figure 16: Time history of the beam tip twist
φ1. Case 1: solid line; case 2: dashed line.
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Figure 17: Time history of the beam mid-span axial force F1. Case 1: solid line; case 2: dashed
line.

develops in the beam and is depicted in fig. 18. The most dramatic difference between the two cases
is found in the beam mid-span torque shown in fig. 19. For case 1, large mid-span torques are
observed at times t = 0.5, 1.5, and 2.5 sec, i.e. when the slider contacts the beam at its mid-span.
For case 2, the torque remains very small at all times and is uniquely due to torsional inertial effects
in the beam.

The driver mid-span axial force is shown in fig. 20; here again sharp differences are observed in
both amplitude and frequency of the response for cases 1 and 2. Finally, the force required to drive
the sliding or cylindrical joint is depicted in fig. 21; the peak value of the driving force is about five
times larger for case 1.

7.3 The variable diameter rotor problem

The last example deals with the modeling of a variable diameter tilt-rotor (VDTR) aircraft. The
purpose of the example is to demonstrate the use of sliding and sliding screw joints in the modeling
of practical problems of engineering interest. Tilt-rotors are machines ideally suited to accomplish
vertical take-off and landing missions characterized by high speed and long range. They operate
either as a helicopter or as a propeller driven aircraft. The transition from one mode of operation to
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Figure 18: Time history of the beam mid-span
out-of-plane shearing force F3. Case 1: solid
line; case 2: dashed line.
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Figure 19: Time history of the beam mid-span
torque M1. Case 1: solid line; case 2: dashed
line.
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Figure 20: Time history of the driver mid-span
axial force F1. Case 1: solid line; case 2: dashed
line.
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Figure 21: Time history of the driving force.
Case 1: solid line; case 2: dashed line.

the other is achieved by tilting the engine nacelles. VDTR’s further refine the tilt-rotor concept by
introducing variable span blades to obtain optimum aerodynamic performance in both hover and
cruise configurations. A general description of current VDTR technology is given in [16]. A design
schematic of a typical VDTR is shown in fig. 22.

VDTR’s are fairly complex machines. The main components of the rotor system are the gim-
bal, the blade hinges and the swashplate with the control linkages. Fig. 23 presents the Sikorsky
telescoping blade design. A detailed description of the functionality of the different components of
a VDTR are beyond the objectives of the present paper. Our interest here is in the fact that the
proper modeling of several key parts of the rotor system and of the blade requires the use of sliding
joints. Fig. 24 presents a multibody model of a typical VDTR configuration where a single blade
only is shown, for clarity. A sliding joint and a sliding screw joint connect the swashplate and the
shaft. The motion of the swashplate along the shaft controls the blade pitch through the pitch link-
ages. Prescribing the relative translation of the sliding joint, i.e the translation of the swashplate
with respect to the shaft controls the pitch setting, effectively tranferring the pilot’s command in
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Figure 22: VDTR design schematic. Top fig-
ure: cruise configuration; bottom figure: hover
configuration.
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Figure 23: The Sikorsky telescoping blade de-
sign.

the stationary system to the blade in the rotating system. The presence of a screw joint forces the
swashplate to rotate with the shaft while sliding along it. This is usually accomplished in a real
system with a scissor-like mechanism that connects swashplate and shaft. This level of detail in
the model, although possible using beams and/or rigid bodies and revolute joints, is not required
for the present analysis. A sliding screw joint models the nut-jackscrew assembly. The motion of
the nuts along the jackscrew allows the variation of the blade span in a continuous manner. By
prescribing the relative translation at the joint we can then deploy or retract the blade according to
a suitable function of the nacelle tilt. Finally, sliding screw joints are used to model the distributed
sliding contact between the torque tube and the outboard blade. Note that a sliding screw joint
must be used here as the pilot’s input is transferred from the translation of the swashplate to the
twisting of the torque tubes through the pitch links, and finally to twisting of the outboard blade.
Appropriate springs and dampers are provided at the gimbal, while springs are present at the flap
and lag revolute joints in order to correctly represent the characteristics of the system.

The VDTR rotor is initially in the hover configuration, with the nacelles tilted upwards and
the blades fully deployed. The rotor angular velocity is equal to 20 rad/sec. The shaft rotational
speed and blade pitch setting are kept constant while the nacelle is tilted forward to reach the cruise
configuration. At the same time, the blades are retracted to avoid impact between the blade tips
and the fuselage, and to optimize aerodynamic performance. The maneuvre is completed in 20 sec,
corresponding to about 64 revolutions of the rotor. The time history of the relative prescribed
rotation at the wing-nacelle revolute joint is given as ϕ = 0.25 π (1 − sin (2 π(t/40 + 0.25)), while
the prescribed displacement at the nut-jackscrew sliding joint is linear in time. The retracted rotor
diameter for cruise mode is 66% of that in hover. This simulation was conducted in a vacuum, i.e.
without aerodynamic forces acting on the blades.

Fig. 25 gives a three-dimensional view of the trajectory of the tip of one of the blades throughout
the maneuvre. This view is deceptively simple. In fact, the tilting of the nacelle involves a complex
tilting motion of the gimbal with respect to the shaft. In turns, flapping, lagging and pitching
motions of the blades are excited. The time history of one of the relative rotations at the gimbal
is presented in Fig. 26. The rotation about the other axis of the universal joint presents a similar
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Figure 25: Tip blade trajectory for the conver-
sion from helicopter to cruise mode of a VDTR.
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Figure 26: Time history of one of the relative
rotations at the rotor gimbal.
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Figure 27: Time history of the relative rotations
at the pitch hinge.

behavior. As the nacelle begins its motion, gimbal rotations are excited and sharply increase
during the first half of the conversion process. Then, the dampers present in the universal joint
progressively decrease the amplitude of this motion. Fig. 27 shows the time history of the blade
pitch. This pitching is entirely due to the gimbal tilting, since the swashplate location along the
shaft was fixed, which would imply a constant value of pitch for a rigid system. As expected, this
motion closely follows the behavior of the gimbal. Fig. 28 shows the time history of lag hinge
rotation, which appears to be undamped. This is to be expected since there are no dampers in the
lag hinges. Such motion would of course be damped by the aerodynamic forces.

Fig. 29 shows the time history of the force at the jackscrew-nut sliding joint during the blade
retraction. Note that the jackscrew carries the entire centrifugal force. Indeed, the blade is free to
slide with respect to the torque tube, and hence, no axial load is transmitted to this member. As
a result, the variable span blade is subjected to compression during operation, a radical departure
from classical designs in which blades operate in tension. As expected, fig. 29 shows that the axial
load in the jackscrew decreases as the rotor diameter is reduced. The high frequency oscillating
components of the signal are once again due to the flapping, lagging and tilting motions of blades
and gimbal discussed above.
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Figure 28: Time history of the relative rotations
at the lag hinge.
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Figure 29: Time history of the force at
jackscrew-nut sliding joint during blade retrac-
tion.

8 Conclusions

This paper focused on the modeling of cylindrical, prismatic, and screw joints in flexible multibody
systems. In the classical formulation of these joints, kinematic constraints are enforced between the
kinematic variables of the two rigid bodies. These constraints express the conditions for relative
translation of the two bodies along a body-fixed axis, and imply the relative sliding of the two
bodies which remain in constant contact with each other at all times. However, these kinematic
constraints no longer imply relative sliding with contact when one of the bodies is flexible. In fact,
when one body is elastic, the classical formulation of cylindrical, prismatic, and screw joints do no
longer enforce contact between the bodies at all times.

A sliding joint was introduced that involves kinematic constraints at the instantaneous point
of contact between the sliding bodies. In the proposed implementation, a specific node of a body
is constrained to remain in contact with a beam element. This joint realistically models the piece
of hardware that allows a flexible body to be in sliding contact with another. Next, a sliding

screw joint was proposed that introduces an additional constraint on the relative rotation of the
bodies. The dynamic behavior of systems with sliding mechanisms was shown to be more complex
when the sliding mechanism was modeled either by a sliding or by a sliding screw joint rather
than by a cylindrical, prismatic, or screw joint. This is due to the fact that for sliding joints, the
sliding conditions are applied at a point that moves over the flexible member. As a result, the
system configurations becomes truly variable, implying flexible members with time-varying natural
frequencies.

Various numerical examples are presented that demonstrate the dramatically different behavior
of the various joints in the presence of elastic bodies. In particular, the variation of the natural
frequencies of the system during the simulation is captured by the sliding joint, together with the
resulting changes in vibratory behavior. The proper modeling of the sliding mechanism was shown
to be a prerequisite to an accurate prediction of the vibratory loads in a slider mechanism.

18



References

[1] J.E. Shigley and J.J. Uicker. Theory of Machines and Mechanisms. McGraw-Hill Book Com-
pany, New York, 1980.

[2] J.C. Simo and K. Wong. Unconditionally stable algorithms for rigid body dynamics that exactly
preserve energy and momentum. International Journal for Numerical Methods in Engineering,
31:19–52, 1991.

[3] J.C. Simo, N. Tarnow, and M. Doblare. Non-linear dynamics of three-dimensional rods: Exact
energy and momentum conserving algorithms. International Journal for Numerical Methods

in Engineering, 38:1431–1473, 1995.

[4] J.C. Simo and N. Tarnow. A new energy and momentum conserving algorithm for the nonlinear
dynamics of shells. International Journal for Numerical Methods in Engineering, 37:2527–2549,
1994.

[5] J.C. Simo and N. Tarnow. The discrete energy-momentum method. Conserving algorithms for
nonlinear dynamics. ZAMP, 43:757–792, 1992.

[6] O.A. Bauchau, G. Damilano, and N.J. Theron. Numerical integration of nonlinear elastic multi-
body systems. International Journal for Numerical Methods in Engineering, 38(16):2727–2751,
1995.

[7] O.A. Bauchau and N.J. Theron. Energy decaying scheme for non-linear beam models. Com-

puter Methods in Applied Mechanics and Engineering, 134(1-2):37–56, 1996.

[8] O.A. Bauchau and N.J. Theron. Energy decaying schemes for nonlinear elastic multi-body
systems. Computers & Structures, 59(2):317–331, 1996.

[9] C.L. Bottasso and M. Borri. Energy preserving/decaying schemes for non-linear beam dynamics
using the helicoidal approximation. Computer Methods in Applied Mechanics and Engineering,
143:393–415, 1997.

[10] C.L. Bottasso and M. Borri. Integrating finite rotations. Computer Methods in Applied Me-

chanics and Engineering, 164:307–331, 1998.

[11] O.A. Bauchau and T. Joo. Computational schemes for nonlinear elasto-dynamics. International
Journal for Numerical Methods in Engineering, 45(6):693–719, 1999.

[12] O.A. Bauchau. Computational schemes for flexible, nonlinear multi-body systems. Multibody

System Dynamics, 2(2):169–225, 1998.

[13] C.L. Bottasso, M. Borri, and L. Trainelli. Integration of elastic multibody systems by in-
variant conserving/dissipating algorithms. Part I: formulation. Computer Methods in Applied

Mechanics and Engineering, 190:3669–3699, 2001.

[14] C.L. Bottasso, M. Borri, and L. Trainelli. Integration of elastic multibody systems by invariant
conserving/dissipating algorithms. Part II: numerical schemes and applications. Computer

Methods in Applied Mechanics and Engineering, 190:3701–3733, 2001.

[15] O.A. Bauchau and C.L. Bottasso. On the design of energy preserving and decaying schemes
for flexible, nonlinear multi-body systems. Computer Methods in Applied Mechanics and En-

gineering, 169(1-2):61–79, 1999.

19



[16] E.A. Fradenburgh and D.G. Matuska. Advancing tiltrotor state-of-the-art with variable di-
ameter rotors. In American Helicopter Society 48th Annual Forum Proceedings, Washington,
D.C., June 3-5 1992.

[17] T.R. Kane and D.A. Levinson. Dynamics: Theory and Applications. McGraw-Hill Book
Company, New York, 1985.

20



Appendix A Rodrigues parameters

A common representation of finite rotations [17] is in terms of Rodrigues parameters r = 2u tanφ/2,
where φ is the magnitude of the finite rotation and u the unit vector about which it takes place.
The following notation is introduced

r0 = cos2
φ

2
= 1 / (1 +

rT r

4
). (A1)

The finite rotation tensor R is
R(r) = I + r0 r̃ +

r0
2
r̃ r̃; (A2)

The relationship between the angular velocity vector ω and the time derivative of Rodrigues pa-
rameters is ω = H ṙ, where

H(r) = r0(1 +
1

2
r̃). (A3)

Matrices R and H are endowed with the following properties

RRT = I; R r = r; R = HH−T = H−TH ; (A4)

R = (I +
r̃

2
)
R + I

2
=
R + I

2
(I +

r̃

2
) (A5)

I = (I −
r̃

2
)
R + I

2
=
R + I

2
(I −

r̃

2
) (A6)
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