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SUMMARY

This paper is concerned with the modelling of nonlinear elastic multi-body systems discretized using the
finite element method. The formulation uses Cartesian co-ordinates to represent the position of each elastic
body with respect to a single inertial frame. The kinematic constraints among the various bodies of the
system are enforced via the Lagrange multiplier technique. The resulting equations of motion are stiff,
non-linear, differential-algebraic equations. The integration of these equations presents a real challenge as
most available techniques are either numerically unstable, or present undesirable high frequency oscillations
of a purely numerical origin. An approach is proposed in which the equations of motion are discretized so
that they imply conservation of the total energy for the elastic components of the system, whereas the forces
of constraint are discretized so that the work they perform vanishes exactly. The combination of these two
features of the discretization guarantees the stability of the numerical integration process for non-linear
elastic multi-body systems. Examples of the procedure are presented.
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1. INTRODUCTION

Multi-body systems can be broadly categorized into three problem types: multi-body systems
consisting of a collection of rigid bodies in arbitrary motion with respect to each other; systems
consisting of a collection of elastic bodies where the elastic displacements and rotations with
respect to a body attached frame of reference are small; and finally systems consisting of a number
of elastic bodies where elastic displacements and rotations can be arbitrarily large. The analysis
methodologies that are optimum for each category vary widely.

This paper is concerned with the analysis of non-linear elastic multi-body systems, ie.
a collection of bodies in arbitrary motion with respect to each other while each body is
undergoing large displacements and rotations with respect to a body attached frame of reference.
The focus is on problems where the strains within each elastic body remain small.

Each elastic body is modelled using the finite element method. The use of beam elements will be
demonstrated in this work. The location of each node is represented by its Cartesian co-ordinates
in an inertial frame, and the rotation of the cross-section at each node is represented by a finite
rotation tensor expressed in the same inertial frame. The kinematic constraints among the various
bodies are enforced via the Lagrange multiplier technique. Though this approach does not
involve the minimum set of co-ordinates,’ it allows a modular development of finite elements for
the enforcement of the kinematic constraints. The representation of the displacements and
rotation quantities in a single inertial frame remarkably simplifies the expression for the kinetic
energy, as demonstrated by Simo and Vu-Quoc.?
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The equations of motion resulting from the modelling of multi-body systems with the above
methodology presents distinguishing features: they are stiff, non-linear, differential-algebraic
equations. The stiffness of the system stems not only from the presence of high frequencies in the
elastic members, but also from the infinite frequencies associated with the kinematic constraints.
Indeed, no mass is associated with the Lagrange multipliers giving rise to algebraic equations
coupled to the other equations of the system which are differential in nature.

The time integration of the resulting equations of motion give rise to a number of problems
such as numerical instabilities and high frequency oscillations of a purely numerical origin.
A thorough review of time integration schemes used in structural dynamics is found in
Reference 3. The Newmark scheme* is a widely used scheme to integrate the equations of motion
resulting from finite element discretizations. Cardona and Geradin® have shown that this scheme
presents a weak instability when applied to constrained multi-body systems. The culprit is the
presence of algebraic equations which are equivalent to infinite frequencies.

The Hilber—-Hughes—Taylor (HHT)® scheme was introduced to eliminate the high frequency
oscillations of a purely numerical origin resulting from the use of the Newmark scheme for large
finite element problems. Indeed, larger and larger finite element models present higher and higher
frequencies which in turn generate high frequency oscillations. The HHT scheme alleviates this
problem by introducing high frequency numerical dissipation. Cardona and Geradin® have
shown that the use of the HHT scheme in constrained multi-body problems can yield satisfactory
system response. Numerical oscillations are observed in the time history response of acceler-
ations, Lagrange multipliers, and velocities, though to a lesser extent. However, these high
frequency oscillations are rapidly damped out. As the complexity of the constrained multi-body
system increases, an increasing amount of numerical dissipation is required to avoid numerical
instabilities and high frequency oscillations.

A more recent study by Farhat et al.” explores various approaches for constructing HHT
based, penalty-free, unconditionally stable algorithms for constrained systems. For all these
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Figure 1. Beam reference line in undeformed and deformed position
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studies, stability proofs are derived for linear systems, then the resulting algorithms are applied to
non-linear problem.

Though this approach is satisfactory, numerical oscillations are never completely eliminated.
However, it raises a basic question: why introduce numerical dissipation to control the weak
instability inherent to the Newmark scheme in the presence of infinite frequencies, rather than
using a scheme that behaves adequately in the presence of such frequencies? This paper investi-
gates an alternative integration scheme for constrained, non-linear elastic multi-body systems.
The focus is to provide a formal proof of stability for non-linear, constrained multi-body
system.

An energy preserving scheme is derived for integration of beam equations. The algorithm
presented here is similar to the energy preserving algorithms presented by Simo and Wong® for
rigid body dynamics, and by Simo and Tarnow® for elastodynamics. The forces of constraint
associated with kinematic constraints will be discretized in such a way that they perform no work.
These two features, energy preservation for elastic elements, and vanishing work of the constraint
forces, result in preservation of the total energy of the multi-body system, and numerical stability
of the integration process is then guaranteed.?

The non-linear beam equations and the energy preserving scheme are derived in Section 2.
Section 3 describes the discretization of the forces of constraint corresponding to a revolute joint.
Several numerical examples are presented in Section 4. Conclusions and recommendations for
future work are presented in the last section.

2. EQUATIONS OF MOTION OF BEAM MODELS

Leti,,1,, and i; form an inertial triad denoted &; &4, éo, and &, be a triad denoted &, attached
to the reference line of the beam before deformation; and é&;, & and é; a triad denoted
&* attached to the reference line of the beam after deformation. The planes formed by éy,, éy3,
and é,, &; define the plane of the cross-section of the beam before, and after deformation,
respectively (see Figure 1).

The strain energy of the beam is written as:

1 L
V=3 f 4T CHer dx, )
0

where L is the length of the beam and x, the curvilinear coordinate along the reference line.
C* are the components of the sectional stiffness tensor and e* the components of the sectional
strain vector, both measured in &*. These sectional strains are related to the sectional displace-

ments as
&* € (uo + ) — RR,l
* — = T = T = T - -
¢ [k} He=2 [k] ‘%[ k ] @
where
RR, O
2= "0 o] ®

and 17 = [1 0 0]. The following quantities are all measured in %: R, defines the components of
the rotation tensor from & to %;; R the components of the rotation tensor from %, to #*; u, the
components of the position vector of a point on the reference line before deformation; u the
components of the displacement vector of the deformed reference line with respect to the
undeformed configuration; and k the components of the sectional elastic curvature vector, with
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k= R'R". The notation (- is used to denote a derivative with respect to x,, and (~) denotes
a skew-symmetric matrix.
The kinetic energy of the beam is expressed as:

1 L
K=3 j PTM*p* dx, @
0

where M* are the components of the sectional inertia tensor, and v* the components of the
sectional velocity vector, both measured in &*. These sectional velocities are related to the
sectional displacements as

y*=geTg=ng[’3] )
)

where o are the components of the sectional angular velocity, with & = R RT; and a superposed
dot denotes derivative with respect to time.
Virtual variations in sectional strains and velocities result in:

6e*T = 6d R + Sd U [y + W) 1R (6)
and
Sv*T = 3d"R + SdTU[ETIR (7

where 0d" = (", 3y™) are the virtual displacements and rotations measured in &. The virtual
rotation is defined as oy = 6RR”, and

0 0
#(-]= [ } ®)
-1 0
The equations of motion of the beam can be obtained from Hamilton’s Principle that states:
te
J (0K =3V +6W)dt =0 9
t;
where 0 W is the virtual work done by the externally applied forces. Introducing equations (1) and
(4) into equation (9) yields
43
J (Ov*TM*p* — §e*TC*e*T + 6W)dt =0 (10)
t

Finally, the equations of motion are found by introducing equations (6) and (7) into equation (10),
and using the strain, and velocity expressions, (2), and (5), respectively, to find

(Rp*) + U[A1Rp* — (Rf*) — ULdo + W ]Rf* =g (11

where the sectional momenta p* = M*p* and forces f* = C*e*measured in & * were defined. The
above equations of motion can be discretized as indicated in Appendix III, equation (36).
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An energy preserving integration scheme is obtained by using this discretization across a time
step, from ¢, to t,,,:

Ru+1Dn+1— RuDi i Un+1 ~ Gy 2R, 4 12R0 | DX + Pier
At At 4 —a, 2

2 ~r ~
- («@n+1/2_fn*+ 12) —U l:a* (@6 + un+1/2):|'@n+1/2_f;l*+1/2 =dn+1/2 (12)
0

where g are the components of the conformal rotation vector of the rotation from %, to &, +1,
measured in & (see Appendix 1), the subscript n + 1/2 refers to the time step mid-point, and
Ja+1/2 refers to elastic forces at this mid-point.

" In Appendix III, discretization (12) is shown to imply:

L
fyﬂmMﬂgn—ﬁH@ﬂwmwgﬂ—gmn=AW 13)
0

The mid-point sectional velocities and strains are now selected as

Uker +OX exvy + e

Q:+1/2 =_2_; €:+1/2=’—2— (14)
With this choice, equation (13) now becomes
Ens1) — E(u,) = AW (15)

where the total energy is defined as E(u) = K + V. In the absence of externally applied loads (i.e.
AW = 0), equation (15) implies preservation of the total energy.

3. CONSTRAINT EQUATIONS FOR A REVOLUTE JOINT

Consider two bodies denoted k and [ linked at a node by a revolute joint (see Figure 2). In the
undeformed configuration, the revolute joint is defined by two coincident triads &% and &% with
unit vectors é§; = ;. After deformation, the revolute joint is defined by two distinct triads
&* and &' with unit vectors éf and é/, respectively. Let the rotation matrices from & to
S =S, FE to ¥, and & to &' be Ry, R¥, and R', respectively, all measured in &. The
kinematic constraint corresponding to a revolute joint is the coincidence of % and &}. This can be
written

¢ =[¢ ¢, ¢:]=0 (16)
where
€1=¢Tes, €, =¢€el; €;=(eTe))sing + ("eh)cos @ (17

The third constraint € defines the relative rotation angle ¢. These constraints are enforced via
a Lagrange multiplier technique. The forces of constraint associated with these constraints are:

S =s4,84¢} + sA84es + sA;81 (sin p e} + cos peh)
f'= —sh188e] — sA,84¢) — sA38(sin de'y + cos pel) (18)

f* =shzef"(cos pel —sinpet)
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Figure 2. Kinematics of a revolute joint

where f* and f* are the constraint moments applied on body k and I, respectively, and f* the
constraint force associated with the degree of freedom ¢; 44, 4; and A5 the Lagrange multipliers
used to enforce the constraint €, ¥, and %5, respectively, and s a scaling factor.

The forces of constraint associated with €, are discretized as

kT R., (R, + R'R
flk =Sl1(212"+1/2kROL'3) 10 011
- —dyp 2
(19)

, 2R, ;R . \Rb:1Ro + RER,
Ji =54 T b I3
- 4 i ao 2

Similar expressions hold for the forces of constraint J_’Z" and j_‘z' corresponding to constraint %,
and the forces of constraint corresponding to constraint &, are discretized as:

2R:, 2R, . \RisiRo + RiRo )
4—af 2 d

_f3k=sl13<

i (20)

2Rh:15Ro |\ RE+1Ro + RiR,
4—ah * 2

_f31=513<

IT Lk IT K IT K IT k
o — o[ Eln+1€in+a + €1n€in €n+1€1n+1 T €20€1n
=543 ) COSPpi1j2 — 3

sin ¢n+1/2>
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It is well known that the forces of constraint perform no work during the dynamic response of
the system. We now wish to find under which condition the work done by the discretized forces
also vanishes. To that effect the work done by the discretized forces of constraint AW, during
a time step is computed. Using relationships (49) and (55) we find

A I/Vconsl (én+ 1= (én
At At

Clearly the work done by the discretized forces of constraint vanishes if
(gn+ 1 (gn
= ==0
At

This clearly corresponds to a weak enforcement of the constraint (16), written as €, 2=0.To
avoid the drift phenomenon associated with the enforcement of equation (21) it is preferable to
enforce

= S&T

21

€ni1=0 (22)

Enforcing this constraint at each step implies equation (21) which in turn implies the vanishing
of the work done by the discretized forces of constraint associated with the revolute joint.

The discretization of the beam equations of motion (12) and (14), together with the discretiz-
ation of the forces of constraint (19) and (20) and constraint (22) provides an unconditionally
stable integration procedure for non-linear multi-body problems.

A variety of kinematic constraints can be developed as outlined above, so that general
multi-body configurations can be modelled effectively.

4. NUMERICAL EXAMPLES

In this section, three numerical examples are presented to assess the advantages and drawbacks of
the fore mentioned energy preserving integration scheme. The first example deals with a 2-4
m long uniform straight beam, hinged at the root as to allow rotation about the &, axis and {ree at
the tip. The beam is initially at rest, with %, aligned with % everywhere and subjected to
a linearly varying ramp load at its tip. This load starts at zero at time ¢t = 0 and reaches its
maximum value at t = 0-025 s, with components of 1000 N in both 1, and i5 directions. The
physical properties of the beam are summarized in Table 1.

Table I. Convergence study: beam properties

Sectional Stiffness Properties

Axial stiffness: 4-35080E + 07 N
Shear stiffness in é, direction: 1-40385E + 07 N
Shear stiffness in é; direction: 2-80769E + 06 N
Torsional stiffness: 2:80514E + 04 Nm?
Bending stiffness, about é,: 2-32577E + 04 Nm?
Bending stiffness, about é: 2:98731E + 05 Nm?

Sectional Mass Properties

Mass 1:60920E + 00 kg/m
Mass moment of inertia about é;:  1-19092E — 02 kgm
Mass moment of inertia about é,:  8:60200E — 04 kgm
Mass moment of inertia about é;:  1-10490E — 02 kgm
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The beam is modelled with four cubic beam elements and the hinge with a revolute joint
element. The dynamic response of the beam was calculated with the generalized-o method,'! with
P = 0-5(p, is the spectral radius at infinite frequency), and the energy preserving scheme. The
analysis was first performed with 250 equal time steps and then repeated with 500, 1000, 2000 and
4000 steps. In general, the results of the two methods were found to be in good agreement. Some
of the time histories calculated with the energy preserving scheme contained higher levels of high
frequency oscillation than the corresponding results from the generalized-o« method, but this is to
be expected considering the absence of numerical dissipation in the energy preserving scheme.
Since no analytical solution exist for this problem, the solution computed with 4000 time steps,
was considered a ‘reference’ solution. The normalized error in tip displacements, velocities, and
root moments, with respect to the reference solution, are plotted in Figure 3 as functions of the
number of time steps. This convergence study confirms the second order accuracy of both
methods.

The second example deals with the flexible elbow mechanism depicted in Figure 4. It consists of
two straight 0-72 m long aluminum beams of rectangular cross section (5 mm x 1 mm), the first of
which is initially along i, and supported at its root by a hinge as to allow rotation about the
1, axis. The second beam hinges at its root on the tip of the first beam with a revolute joint of
which the axis is aligned with beam 1. Two masses of 500 g each are rigidly connected at the tip of
each of the two beams. The beam cross sections are oriented in such a way that the smaller of the
two bending stiffnesses is about the é; axis, in both cases. The modulus of elasticity, Poisson
constant and density of aluminum are 73 GN/m?, 0-3 and 2700 kg/m?> respectively.

The system is initially at rest. The loading of the system consist of a triangular pulse load
applied to the tip of beam 1, acting in the i, direction, and a triangular pulse torque between the
two beams. The direction of the torque is such as to accelerate beam 2 about the negative of its

Tip displacement vector
----------- Tip velocity vector

Root internal moment vector
10° .

X Generalized-o, p_= 0.5
B -+ Energy Preserving

Log of Error

10° 1:3" 10
Log of Number of Steps

Figure 3. Error in tip displacement and velocity, and root internal moment vectors
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Figure 4. Flexible elbow mechanism, in the initial configuration

Figure 5. Flexible elbow mechanism: motion and deformation of beams

root €; axis. The duration of both pulses is 0-256 seconds, peaking at 0-128 seconds with a 0-1
N value for the tip load and a 0-01 Nm value for the torque.

The system was modelled with 12 cubic beam elements for each beam, two revolute joint
elements and two rigid masses, for a total of 446 degrees of freedom. The dynamic response of the
system was computed with the generalized-o method (p, = 0-5), and the energy preserving
scheme, for a period of 100 s, using a total of 25000 equal time steps. The energy preserving
scheme failed to converge at the 15620th time step, at 6248 s, most probably due to significant
high frequency content of the predicted response. Up to this point, however, the two methods are
in fairly good agreement. It should be noted that the trapezoidal rule (p,, = 1), which does not
provide numerical dissipation, is unstable for this problem.

The motion and deformation of the two beams are shown in Figure 5. In this figure, the
position of the two beams at 5 s intervals are plotted on a three dimensional graph: the solid lines
corresponding to the results of the energy preserving scheme and the dashed lines corresponding
to those of the generalized-a method. The results of the two methods are in very good agreement.
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Figure 6. Flexible elbow mechanism: time history of conformal rotation vector component a, at mass 1 measured in the
triad associated with the root of beam 1
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Figure 7. Flexible elbow mechanism: spectrum of conformal rotation vector component a, at mass 1 measured in the
triad associated with the root of beam 1
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In addition to the large overall motion depicted in Figure 5, a number of vibratory modes are
also excited. By far the most significant of these is the torsional response of beam 1; a Fourier
analysis (with a 0-178 Hz resolution) revealed a single frequency response at 2:310 and 2:308 Hz in
the case of the energy preserving scheme and generalized-a method, respectively, both cases with
an amplitude of 14-9°, at mass 1. These results are in good agreement with those predicted by an
eigenvalue analysis of the system in the reference configuration, which yields a torsional natural
frequency of beam 1 of 2:309 Hz. Beam 2 does not participate in this mode.

Some other vibration results are presented as a group of paired graphs, Figures 6-11. The
second graph of each pair shows the frequency content of the responses, obtained by Fourier
analysis of the time history shown in the first graph of each pair. Each frequency graph is scaled in
such a way that the vertical axis may directly be interpreted as an amplitude axis. No windowing
was used during the Fourier analyses, which may lead to inaccuracies in amplitude values due to
smearing. It is also important to note that for the time step At = 4 x 1073 s used in the analysis,
a frequency of 2-5 Hz corresponds to 100 time steps per period (At/T = 0-01) whereas 25 Hz
corresponds to At/T = (-1. At this latter frequency, the generalized-a method (p,, = 0-5) already
involves a significant amount of numerical dissipation.

The first pair of graphs, Figures 6 and 7, show the results pertaining to the conformal rotation
vector component a, at mass 1, measured in the triad associated with the root of beam 1. These
are indicative of bending vibrations of beam 1, about the 7, axis. The spectra were obtained with
4096 point fast Fourier transforms (FFTs). Even though the time histories of a, calculated with
the two methods are quite different, the difference seems to be primarily due to the presence of
high frequency oscillations in the energy preserving scheme. Indeed, Figure 7 shows that the
results of the two methods are in good agreement as far as low frequencies are concerned (peaks at
0-55, 4-52 and 9-16 Hz). The effect of numerical dissipation of the generalized-a method is
apparent for the peak at 14-52 Hz. At this frequency the system would have completed 489
oscillations between the termination of the applied load pulse and the start of the FFT time
history at t = 34 s.

The next pair of graphs, Figures 8 and 9, shows the results pertaining to the transverse shear
force in the €, direction, at the Gauss point closest to the root of beam 1. Once again, the energy
preserving scheme results show a very significant high frequency content. The spectra, both
obtained with 4096 point FFTs, show good agreement with respect to the lowest peak at 0-55 Hz:
both methods report amplitudes of 3-46 x 10~ 3 N. Both agree on the placement of peaks at other
frequencies and on their amplitudes, but at 14-52 Hz the generalized- method has already
damped out the oscillation significantly. Note that the smearing associated with the FFT is also
contributing to discrepancies between the results of the two methods. FFT results for the energy
preserving scheme reveal high amplitude oscillations at various frequencies around 20 Hz, which
are probably responsible for the superposed ‘noise’ evident in the time history.

The last pair of graphs deals with the behavior of beam 2, and depicts the transverse
displacement of mass 2 in the &, direction, relative to the root of beam 2, and measured in the
triad attached at this root. With respect to the dominant frequency, the results of the two methods
in the time histories, shown in Figure 10, are in good agreement. The spectra, shown in Figure 11,
were both obtained with 1412 point discrete Fourier transforms, implying a frequency resolution
of 0-18 Hz. Both peak at 2-83 Hz with an amplitude of 29-8 mm, which confirms the good
agreement of the dominant frequency. The eigenvalue analysis of the system in its initial
configuration indicated that the fifth elastic mode is at 290 Hz. This mode involves primarily
a bending vibration of beam 2, about its é, axis, with virtually no participation of beam 1, and is
not expected to change with large rotations of the system components. It is evident from these
results that vibration in this mode was also significantly excited by the applied pulse loading.
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Figure 8. Flexible elbow mechanism: time history of transverse shear force in €, direction at root of beam 1
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Figure 10. Flexible elbow mechanism: time history of transverse displacement of mass 2 in the &, direction relative to, and
measured in the triad associated with the root of beam 2
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Figure 11. Flexible elbow mechanism: spectrum of transverse displacement of mass 2 in the &, direction relative to, and
measured in the triad associated with the root of beam 2
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Even though the two amplitude values of the second peak in the spectra (at 7-97 Hz) are in
reasonable agreement, the two methods predict responses with a 138° phase difference. This phase
difference is evident in the time histories depicted in Figure 10.

The third numerical example deals with the swing, shown in Figure 12, which consists of
a beam and a mid-span mass, with physical properties identical to those of either beams or masses
of the flexible elbow mechanism. Everywhere along the span of the beam %, is aligned with %,
and the beam cross section is oriented in such a way that the smaller of the two bending stiffnesses
is about the ¢, axis. The mass is rigidly connected to the beam at its mid-span position, labelled
C in the figure. The beam is suspended at each end by two rigid links, and is initially at rest in the
position as shown in the Figure 12. The rigid links impose a kinematic constraint corresponding

to fixed distance between points O, and A, and O, and E of 0-36 and 0-36\/5 m, respectively. The
points labelled B and D indicate the quarter and three quarter span points of the beam,
respectively. The loading of the system consist of a triangular pulse in the 7, direction applied at
the mid-span mass. This pulse starts at time ¢t = 0, peaks at 2 N at t = 0-128 s and terminates at
t =0256s.

036 m

Mass

c D

0.72m L, 036m

T

Figure 12. Swing comprising two rigid links and a beam with midspan mass

Figure 13. Swing: motion and deformation of beam and motion of links, at 0-1 s intervals, with solid lines indicating
positions at t = 0 and 1 s, and the locus of point A
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The system was modelled with four equal length cubic beam elements, two rigid links and
a rigid mass, for a total of 80 degrees of freedom. The dynamic response of the system was
calculated over a 1s period using both the energy preserving scheme and the generalized-o
method, (p,, = 0-5), in each case with 2000 equal time steps of At = 0-5x 1073,

Figure 13 shows the overall response of the system: the deflected beam configuration predicted
by the energy preserving scheme is shown at 0-1 s intervals. The solid lines indicate the initial and
final configurations, as well as the circular arc locus of point A. The significant elastic deformation
of the beam is evident in this figure.

The loci of various points on the beam are depicted in Figure 14 where the initial and final
configurations of the beam are shown in dashed lines. As expected, points A and E follow circular
arcs, even though point E reverses its direction of motion some time during the 1s period. At
t = 0-641 s, link O,-A and the beam line- up approximately (at this point the beam is no longer
perfectly straight). This event (labelled ‘event X°) has considerable impact on the dynamic
behaviour of the system. The motion of point C is quite smooth as a result of the high inertia
attached at this point, except for an almost instantaneous change in direction at event X. This
contrasts with the motions of points B and D which become highly vibratory after event X.

Figure 15 shows a comparison of the predicted time histories for the i; and iy direction
displacement components of point B, for the energy preserving scheme and the generalized-«
method. The two methods are in excellent agreement, small differences being barely visible only
after event X.

Figure 16 shows the calculated time histories of the axial force at the Gauss point immediately
to the left of the mid-span mass. The two methods are in close agreement until right after the high
peak caused by event X. The peak value is predicted to be 115-8 and 112-7 N, for the energy
preserving and generalized-o methods, respectively, and is predicted by both methods to occur at
time t = 0-641 s. After this event the energy preserving scheme results show much more pro-
nounced high frequency oscillations than the generalized-« method. Similar trends are observed
when other variables are plotted: the displacement results of the two methods are in excellent
agreement, while the velocities and internal forces are in excellent agreement up to event X, after
which high levels of high frequency oscillation is observed in the energy preserving scheme results.

The convergence criterion used to predict the above responses is based on an energy-like
quantity, and is written as

A kT A k
o = YA KAW] (23)
VIAUTK Ay

Figure 14. Swing: loci of five nodes on the beam
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Figure 15. Swing: time history of displacement components of point B in the (a) fl and (b) fa directions
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Figure 16. Swing: time history of axial force in the beam, at the Gauss point immediately to the left of the midspan mass
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where K is the dynamic stiffness matrix, Au*T the displacement increment at the k-th iteration,
and ¢ a small positive number. Let e, be the true energy norm defined by

_ ‘E(t) — E(t,)

Et) 0

where t, is some reference time after the applied loads have been released.

If the non-linear equations of motion are solved exactly e; = 0, and this was shown in Sections
2 and 3 to imply e, = 0. In the practical implementation, iteration is stopped when e; < ¢, and
one would expect e, to become a small quantity as well. To verify this claim, both norms were
computed and plotted in Figure 17. The convergence criterion is chosen as e¢; < 1076, Up to
event X, e; < 1076 clearly implies e, to remain small. At event X, however, a jump of 6 orders of
magnitude appears in e,. In other words satisfaction of the energy-like criterion e; < ¢ does not
necessarily imply strict energy preservation of the system.

In view of this problem, it seems natural to use the true energy of the system as a convergence
criterion, i.e. e, < & The code was modified to use this new criterion. However the computation
failed to converge under this new convergence criterion at t = 0-6355 s, i.e. during the early stages
of event X. The time step was reduced by a factor of 10; this allowed the solution to proceed up to
time ¢ = 06360 s. Further reducing the time step by another order of magnitude resulted in
convergence failure at time ¢t = 0-6301 s. The history of the true energy norm with the various time
steps is shown in Figure 18. This behaviour can probably be explained as follows. The energy like
criterion (23) only involves increments in displacement, whereas the true energy criterion (24)
depends on both displacements and velocities. During event X, large changes in velocity are
present, rendering the convergence of the true energy norm more difficult. Selecting a smaller time
step does not alleviate this problem because the smaller time step allows the resolution of
increasingly higher frequency oscillations.

10 T T T T T T T T T

-4 | (a) I"ﬁ""‘ ~ J’\‘\’“f“ "‘\u-ﬂ'\ﬁ_ .s.'r‘l'l/.—"l\" V"V“‘_
10 ! g e qw.‘u'

(b)
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i
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Figure 17. Swing: time history of (a) e, and (b) the energy-like norm e,
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Figure 18. Swing: time history of e, for (a) At = 50x 1074, (b) At = 50x 1075, (c) At =50x 107 ®s
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Figure 19. Swing: Time history of the true energy norm for the generalized-« method

The above discussion shows that when the dynamic response of the system is smooth, the use of
either the energy or the energy-like norm is equivalent. However, in the presence of high
frequencies, the satisfaction of the energy-like norm does not necessarily imply strict energy
preservation. Furthermore, numerical experimentation showed that satisfaction of the true
energy norm criterion does not imply the satisfaction of the energy-like criterion.
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It should be noted that the generalized-o method has no convergence problems with a time step
At = 0-5x 1073 s (the energy-like norm criterion (23) was used), though energy preservation is
clearly not implied by this convergence. Figure 19 shows the evolution of the true energy norm
(24) for the generalized-a solution. The general trend is a decrease in the total energy of the
system, as expected form the dissipation characteristics of this method. At event X, 30 per cent of
the total energy of the system is numerically dissipated in eight time steps only. However, 25 per
cent of the total energy is numerically created in the next six time steps. This clearly shows the
shortcomings of using a method which stability has only been established for linear systems. For
linear systems, the generalized-« method only dissipated energy, thus establishing the uncondi-
tional stability of the scheme. However, when applied to a non-linear system, energy can be
created in the numerical solution process, and hence, lead to potential instabilities.

5. DISCUSSION AND CONCLUSIONS

The equations of motion resulting from the modelling of multi-body systems with the finite
element method are stiff, non-linear, differential-algebraic equations. Time integration of these
equations is a difficult task as instabilities and high frequency numerical oscillations are often
present.

The classical trapezoidal rule, which is proved to be unconditionally stable for linear systems,
was shown to be weakly unstable in the presence of kinematic constraints by Cardona and
Geradin.’ The same authors used the HHT scheme to overcome this weak instability. This
approach, however, cannot be proved to be stable for non-linear systems. In fact, the last example
presented in this paper shows that, in a specific case, a large increase in the total energy of the
system is possible. This is clearly incompatible with an unconditionally stable method.

In this paper an alternate approach was followed. Discretized equations for the dynamic
response of elastic beams were presented that imply preservation of the total energy. Discretized
constraint forces corresponding to the kinematic constraints associated with a revolute joint were
dertved and shown to perform no work during the evolution of the system. The combination of
the above features of the model guarantees unconditional stability of the overall integration
process for non-linear multi-body systems as it implies preservation of the total energy of the
system.®> Numerical experimentation shows that the strict energy preservation implied by the
exact solution of the discretized equations of motion is indeed satisfied to a high level of precision.
The formal proof of stability derived in this paper for non-linear elastic multi-body systems
represents a significant improvement over existing methodologies for which stability is only
proved for linear systems. The accuracy and cost of the proposed scheme are similar to those of
the HHT or generalized-o schemes.

High frequency oscillations were observed in the response predicted by the energy preserving
scheme. The presence of these high frequency oscillations is due to the complex nature of the
dynamic response of multi-body systems and the lack of high frequency numerical dissipation of
the energy preserving scheme. The absence of high frequency numerical dissipation can result in
undesirable response features. First, the time history of internal forces and velocities can present
a very significant high frequency content. Second, it seems that in some pathological cases
involving significant high frequency content due to shocks such as presented in the third example,
the presence of high frequency oscillations can hinder the convergence process for the solution of
the non-linear equations of motion. The selection of a smaller time step does not necessarily help
this convergence process, as a smaller time step allows even higher frequency oscillations to be
present in the response. The development of ‘energy decaying’ schemes, i.e. schemes eliminating
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the energy associated with vibratory motions at high frequency, will be presented in a subsequent
paper.
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APPENDIX I. THE CONFORMAL ROTATION VECTOR.

Let ¢, and e be the Euler parameters representing a finite rotation.!® Consider now the following
conformal transformation which defines ¢, and the components of the conformal rotation vector ¢:

4e, c 4e Co
= , E= s e = ———
1+eo - 1+eo ° 4"00

10y

(25)

Co s, €7

4 — Co
where the dependent parameter co = 2 — (¢? + ¢3 + ¢3)/8.

The geometric interpretation of the conformal rotation vector is easily derived from its
definition as

¢ = 4utan (26)

&S

where ¢ is the magnitude of the finite rotation and u the components of the unit vector about
which it takes place. The following matrix is defined:

T
<c01 . ) @)

1
G(g)=4_c0

It enjoys the following remarkable properties:

GGT=1, Ge=c (28)
&T &t G+GT
G =GT — = 29
+4—'Co 4—C0 ( 2 ) ( )
~T ~T GT -1
(r+5)e=(1-5) = (55%) @
Co Co 2
-
C —G6-G" 31)
4 — Cq

The rotation matrix defined by ¢ can be easily written as

R(c) (€31 + 2coé + & + ¢+ c") = G(e)Ge) (32)

1
T (4 - co)

This last relationship shows that the conformal rotation vector can be conveniently used to
express the half rotation (through G(c)), and the rotation (through R(c)). All these expressions are
purely algebraic.
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APPENDIX II. DISCRETIZATION OF THE FINITE ROTATIONS

Consider an initial time ¢;, a final time t; and a mid-point time t,, = (¢; + t;)/2 and the correspond-
ing triads &;, &, and &}, respectively. The rotation matrices associated with those triads are R;,
R¢, and R, respectively, all measured in . R(c) is the rotation matrix from .%; to ¥ ;, measured in
& . The mid-point triad %}, is defined so that the rotation from %, to &, and &, to ¥ are equal.
Let G be that rotation, measured in &. Let G* and R* be the corresponding rotation matrices
measured in &;,. The following relationship are readily derived:

G = R,RT, G*=RIRTR,R,
G = RRY, G*=RIRIRR, (33)
R=RRT, R*=RIRTRR,RIRTR,R,
and
R:R, = R,RoG* = R,R,R*
RyRy = R;RoG* = R(R,G*" (34)
RiRy = R,R,G*T = R(R,R*T

Finally, the following notations are induced:

RiRO 0 RfRO 0
= - 35
& [ 0 RiRo]’ % [ 0 Rfko] (33)

APPENDIX III. DISCRETIZATION OF THE EQUATIONS OF MOTION OF A BEAM

Consider the following discretization of the beam equations of motion (11):

Rip¥ — Ript " [af - 2R,,Ro]_pi* + pf

At At 4 — Co 2
E 2V 2 ~ ~ *
— (Zugn) — % C_(“0+uh) hgh = qn (36)
o
where
R:R, + RiR, 0
9 — 2

h = 0 2R.R,

4 — Co

the mid-point displacement is defined as u, = (4; + u;)/2, and the elastic forces g# will be
determined later.
Premultiplying these discretized equations by
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and integrating over the span of the beam yields:

“luf —ul T |[ Rept — Ript |, [ % — % 2RuRo | pt + pf
o At At At At 4 —cq 2

2 ~7 ~ i
= (2ugn) — %[— (@0 + 1)
Co

Integration by parts now yields

0 At At At | At 44—
L T /T T T T .T
Ug — Uy € | Y — Ui ¢ L ~ *
Al [ e G [
AW
= 37
Ar 37

where AW is the work done by the externally applied forces during a time step.
Focusing on the inertial terms in the above equation and using relationships (34), the first
integral becomes
o*xT oxT
G¥+—+ 0 G'—— 0

L,T_ ,T *T 4—c * 4—c *
J‘:}r u; RhROQK{J 0 P _ 0 2 dx,

At
° 0 I 0 I

Invoking first equation (29) and then once more relationship (34), this integral may be written as

L p*_p* 1 L
J ppT &1 dx1=EJ vn TM*(vf — o) dx, (38)
4]

where

Focusing now on the elastic terms in equation (37), the second integral becomes

1 L T T
_— k
At L gn {'@"

Using relationships (34), the first three components of the vector between the braces in equation
(39) can be written as

up — uj
’

2 0
— ot [E—(ag+a;, ]‘C'}dxl (39)

0

G*T 4+ G*
2

G*T + G* T &
= [(1 +ox RoRR(wo +up) — |1 —— RGRG (U6 + ui)
[

o*T
RGR} [(yb + up) — (uo + ui) + RaRo — RER{(uo + ui + o + yé)]
0

2 0
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With the use of, once again, relationships (34), and equation (30), the above expression can be
further simplified to

RUR{ (uo + up) — RERT(wo + ui) = &f — &t (40)
The last three components of the vector between the braces in equation (39) can be written as:

2RIRT
4—cp

(RuRoc*)

With the help of relationships (34) it may be shown that

2RIRT 2G*T - -
s RuRoc*Y = - —— [c* + (k& + k¥)e*] = k¥ — k¥ @1)
4 e CO 4 _ CO - -
Combining results (40) and (41), the elastic terms become
1 L
AL L grlef — ef)dx, (42)

Defining the elastic forces gi = C*eff, where eff are yet to be defined sectional strains, the
expression (42) may be written as

1 L
-—f exTC*(ef — ef)dx, (43)
At Jo
Substituting the final expressions from (38) and (43) into equation (37) results in
L
f oRT M*(f — vf) + eXTC*(ef — ef)dx; = AW (44)
0

This fundamental scalar relationship is implied by the discretization (36) of the beam equations of
motion.

APPENDIX IV. DISCRETIZATION OF THE FORCES OF CONSTRAINT
IN A REVOLUTE JOINT

Consider the following discretization of the forces of constraint (17) corresponding to the
constraint %;:

(45)

2RER, . \RiRo + RIR, .
4—01(‘) 13 2 ll

_f1k=5'11<

1R, . \RRo+ R'R
S (300, ) S0 2250, @6)
4 —ay 2

The work done by these forces of constraint AW L), over a time step is

AW _ T, "
— = ft 4 ] @7
At t= At =
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Introducing equations (45) and (46), and using equations (31) and (33) yields
AW ionst _ Skt

TpIT IT 1k kT
o =~ [ITRIR{T(GG* — G'GT)RERois]

(48)
With the help of equation (33), this finally becomes
AWS %%
At = S§/y .

49
Ar (49)

Consider now the following discretization of the forces of constraint (17) corresponding to the
constraint €:

5 g (50)
fi= st (i’ﬁg g R K, 1)
= %( eirel er etieli cos ¢y — el 42- efieli . ¢h> 52)
where ¢y, = (¢ + ¢;)/2, and
by = sin ¢ +2- sin ¢; i+ cos ¢; ;— cos ¢; i,
The work done by these forces of constraint AWC“;",,)st over a time step is
A_VI% g f3 + = f3 + 2sin ¢f 9 1 (53)

Introducing equations (50)—(52), and using equations (31) and (33) yields
AW _ shs[ .
i ' = A l:;}RER{,T (G'TG* — G'G*T)RER,i,

1T
f + €1i

5 it - (sin ¢ — sin ¢;)

—z—ﬂg— (cos ¢; — cos ¢f)]

(54
With the help of equation (33), this finally becomes
AW, €3¢ — s
cons — 1 55
A R G3)
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