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This paper deals with the modeling of the bifilar pendulum, a hub-mounted self-tuning vibration absorber used on certain
rotorcraft. The bifilar consists of a tuning mass that acts as a pendulum and is connected to a support frame by means of two
cylindrical tuning pins. The tuning pins roll without sliding on curves of cycloidal shape machined into the tracking holes
on the support frame and tuning mass. In this work, a detailed model of this device is presented, which involves nonlinear
holonomic and nonholonomic constraints. The formulation is developed within the framework of finite element based
dynamic analysis of nonlinear, flexible multibody systems, and features energy preserving and decaying time integration
schemes that provide unconditional stability for nonlinear systems. Numerical examples are presented that demonstrate the
efficiency and accuracy of the proposed approach.

Introduction

The bifilar pendulum is a self-tuning vibration alleviation device
mounted on the main rotor hub of rotorcraft, and its basic components
are shown in Fig. 1. A main tuning mass is attached to a support arm by
means of two pins rolling on the tracking holes. Experimental evidence,
such as wear patterns on the tracking holes, indicates that the circular
pins are in rolling contact with the support arm and the tuning mass at
all times. The natural frequency of the system is tuned so as to absorb
in-plane rotor vibrations at a specified frequency. The bifilar pendulum
has a long history: Den Hartog (Ref. 1) credits Sarazin in France and
Chilton in the United States with the independent invention of the bifilar
pendulum as a vibration absorber in multicylinder engines. A description
of several configurations of rotorhead absorbers is found in Refs. 2–4.

The goal of this paper is to develop a detailed and accurate model of
this device within the framework of multibody system dynamics (Refs. 5–
7). In this approach, complex dynamical systems are represented as a
collection of rigid or flexible bodies connected by joints. In view of their
solid steel construction, the tuning mass and support arm of the bifilar
pendulum can be considered to be rigid bodies. The challenge of this
work is to model the kinematic conditions associated with the rolling
of the tuning pins on the tracking holes by means of a set of joints that
impose the proper kinematic constraints between these two bodies. It will
be assumed that the pin remains in rolling contact with the tracking holes
at all times, as suggested by experimental evidence.

The topics of contact, intermittent contact, and impact have received
considerable attention in the multibody dynamics literature. When an-
alyzing a system involving contact, the kinematics of the problem are
expressed in terms of candidate contact points (Ref. 8), i.e., the points
of the bodies that are the most likely to come in contact. The candi-
date contact points are determined by a number of nonlinear holonomic
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constraints that involve the kinematic variables defining the configura-
tion of the contacting bodies and the parameters that describe the curve
representing their outer shape. The knowledge of the location of these
candidate contact points leads to the definition of the relative distanceq
between the bodies. This approach was used by a number of researchers
such as Khulief and Shabana (Ref. 9), Lankarani and Nikravesh (Ref. 10),
Cardona and G´eradin (Ref. 11), and Bauchau et al. (Refs. 12–15) among
others.

Although directly applicable to modeling of the bifilar pendulum,
these various approaches are unnecessarily complex. If intermittent con-
tact can occur, the relative distanceq between the bodies must be evalu-
ated at each time step during the simulation and the conditions for contact
or separation must be checked as well. Under the assumption of contin-
uous rolling contact, the relative distance vanishes at all times, resulting
in considerably simpler formulations.

The kinematic conditions associated with the sliding of a body along
a flexible track have been presented by Li and Likins (Ref. 16) within the
framework of Kane’s method. Cardona (Ref. 17) derived a finite element
based formulation for the sliding of a body along a prescribed curve.
Finally, Bauchau (Ref. 18) presented the formulation of a sliding joint
that enforces the sliding of a body along a flexible beam. This formulation
was later refined (Ref. 19) to include constraints on the relative rotation
between the sliding bodies. These formulations could form the basis for
modeling the bifilar pendulum, but are again of unnecessary complexity.
Indeed, the flexibility of the tracking holes has most likely negligible
effect. The formulation proposed in this work relies on a curve sliding
joint that enforces the sliding of a body on a rigid curve connected to
another body.

The paper is organized in the following manner. After a brief def-
inition of the notational conventions used in this paper, the concept of
joints in multibody systems is briefly discussed. Next, the modeling of a
bifilar pendulum with circular tracking holes is presented, and the formu-
lation is then extended to account for tracking holes of arbitrary shape.
The proposed model makes extensive use of a curve sliding joint, the
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Fig. 1. The bifilar pendulum.

formulation of which is detailed in the next section. Finally, numerical
examples are presented to validate the proposed formulation. The paper
concludes with the presentation of a model of the UH-60 rotor system
that includes the four hub-mounted bifilar pendulums.

Notational Conventions

The kinematic description of bodies in their reference and deformed
configurations will make use of three orthonormal bases. First, an in-
ertial basis is used as a global reference for the system; it is denoted
S I := (i1, i2, i3). A second basisS0 := (e01, e02, e03), is attached to the
body and defines its orientation in the reference configuration. Finally,
a third basisS := (e1, e2, e3) defines the orientation of the body in its
deformed configuration.

Let u0 andu be the displacement vectors fromS I to S0, andS0 to
S, respectively, andR0 andR the rotation tensors fromS I to S0, and
S0 toS, respectively. In this work, all vector and tensor components are
measured in eitherS I or S. For instance, the components of vectoru
measured inS I andS will be denotedu andu∗, respectively, and clearly

u∗ = RT
0 RT u. (1)

Similarly, the components of tensorR measured inS I andS will be
denotedRandR∗, respectively. The skew-symmetric matrix formed with
the componentsu will be denoted̃u.

In this work, the external shape of a rigid body is described by a
spatial curve defined by its NURBS (Non-Uniform Rational-B-Spline)
representation (Refs. 20, 21). The curve is parameterized with the variable
η ∈ [0, 1]. The Frenet triad associated with a point on a curve is denoted
asS ′ := (t(η), n(η), b(η)), where vectorst(η),n(η) andb(η), are the curve
unit tangent, principal normal and binormal vectors, respectively.

Joints in Multibody Systems

In multibody formulations, complex dynamical systems are repre-
sented as a collection of rigid or flexible bodies connected by joints.
Joints impose constraints on the relative motion of the various bodies of
the system. Most joints used for practical applications can be modeled
in terms of the so calledlower pairs(Ref. 22): the revolute, prismatic,
screw, cylindrical, planar and spherical joints, all depicted in Fig. 2. If two
bodies are rigidly connected to one another, their six relative motions,
three displacements and three rotations, must vanish at the connection
point. If one of the lower pair joints connects the two bodies, one or more
relative motions will be allowed. For instance, therevolute jointallows
the relative rotation of two bodies about a specific body-attached axis
while the other five relative motions remain constrained.

Cylindrical Prismatic Screw

Revolute Spherical Planar

Fig. 2. The six lower pairs.

Fig. 3. Revolute joint in the reference and deformed configurations.

The revolute joint

Consider two bodies denoted with superscripts (.)k and (.)`, re-
spectively, linked together by a revolute joint, as depicted in Fig. 3.
In the reference configuration, the revolute joint is defined by tri-
ads S0k := (ek

01, e
k
02, e

k
03) and S0` := (e`01, e

`
02, e

`
03) that are coincident,

S0k=S0`. In the deformed configuration, the orientations of the
two bodies are defined by two distinct triads,Sk := (ek

1, e
k
2, e

k
3) and

S` := (e`1, e
`
2, e

`
3). The kinematic constraints associated with a revolute

joint imply the vanishing of the relative displacement of the two bodies
while the triadsSk andS` are allowed to rotate with respect to each other
in such a way thatek

3= e`3. This condition implies the orthogonality ofek
3

to bothe`1 ande`2. These two kinematic constraints can be written as

C1 = ekT
3 e`1 = 0, C2 = ekT

3 e`2 = 0. (2)

In the deformed configuration, the origin of the triads is still coincident.
This constraint can be enforced within the framework of finite element
formulations by Boolean identification of the corresponding degrees of
freedom.

The relative rotationφ between the two bodies is defined by adding a
third constraint

C3 =
(
ekT

1 e`1

)
sinφ +

(
ekT

1 e`2

)
cosφ = 0. (3)

The three constraints defined by Eqs. (2) and (3) are nonlinear, holonomic
constraints that are enforced by the addition of constraint potentialsλi Ci ,
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Fig. 4. The curve sliding joint.

whereλi are the Lagrange multipliers. Details of the formulation of the
constraint forces and their discretization can be found in Refs. 23 and 24.

The curve sliding joint

The revolute joint is a very common joint in multibody dynamics. For
modeling the bifilar pendulum, a more unusual joint, thecurve sliding
joint, will be necessary. In this joint, depicted in Fig. 4, body`must slide
on a curve rigidly connected to bodyk: a point of body` must be in
contact with the curve at all times. This condition will be enforced by
a set of nonlinear holonomic constraints. In some cases, the orientation
of body ` must remain constant with respect to the local Frenet triad
associated with of the curve. This is achieved by imposing an additional
set of nonlinear holonomic constraints. Details of the formulation of the
curve sliding joint will be developed in a later section.

Bifilar with Arbitrarily Shaped Tracking Holes

The kinematic conditions associated with the rolling of the pin on the
tracking holes are at the heart of the modeling of the bifilar pendulum.
At first, the kinematic constraints corresponding to this configuration are
discussed, then the multibody formulation is presented.

Kinematic constraints

Figure 5 shows the configuration of a bifilar pendulum with arbitrary
tracking holes. A rotating orthonormal basisSH := (eH

1 , e
H
2 , e

H
3 ) is at-

tached at pointH to the hub that rotates at an angular speedÄ. The
curves defining the shape of the tracking holes are denoted byC1 and
C2, with curvilinear coordinates denoteds1 ands2, respectively. Points
O1 and O2 are reference points on the support arm and tuning masses,
respectively. The center of mass of the tuning mass is located at a distance
Rm from point O2. The circular pin of diameterd is in contact withC1

andC2 at pointsA andB, respectively, and its center is located at point
P. Due to the symmetry of the pendulum, see Fig. 1, the tuning mass does
not rotate with respect to the hub-attached basisSH . It is convenient to
define the quantitiesω∗1=−θ̇ eH

3 andω∗2=−γ̇ eH
3 which are the angular

velocities of the pin measured in the Frenet triads associated with curve
C1 at the point of contactA andC2 at pointB, respectively. The notation
(̇ ) denotes a derivative with respect to time.

The rolling conditions for the pin on curvesC1 andC2 are

ṡ1 = 1

2
dθ̇ ; ṡ2 = 1

2
dγ̇ , (4)
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Fig. 5. Configuration of the bifilar pendulum with arbitrarily shaped
tracking holes.
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Fig. 6. Rolling pin on an arbitrarily shaped curve.

respectively. These constraints are enforced as nonholonomic constraints
of the form

C1 = ṡ1 − 1

2
dθ̇ ; C2 = ṡ2 − 1

2
dγ̇ . (5)

Details of the formulation of the constraint forces and their discretization
for nonholonomic constraints can be found in Ref. 25.

Multibody representation

In order to ease the understanding of the bifilar multibody formula-
tion, consider first the rolling pin shown in Fig. 6. An orthonormal basis
SC := (eC

1 , e
C
2 , e

C
3 ) is attached at pointO. A rolling pin of diameterd is

in contact with a curve of arbitrary shape at pointA. The angular velocity
of the pin measured in the Frenet triad associated with the curve at point
A is denoted byω∗ =−θ̇ eC

3 . The rolling condition is theṅs= d/2 θ̇ .
This system can be modeled with a multibody formulation. A curve

sliding joint connects the curve to a rigid body of lengthd/2. This rigid
body is attached to a revolute joint whose relative rotation defines the
pin’s angular motionθ measured in the Frenet triad of the curve at the
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Fig. 7. Multibody representation of the bifilar pendulum with arbi-
trarily shaped tracking holes.

contact point. By enforcing the nonholonomic constraintC= ṡ− d/2 θ̇ ,
this multibody system becomes kinematically equivalent to a pin rolling
on a curve of arbitrary shape. The system will also be dynamically equiv-
alent provided that inertia properties of the pin are associated to the inner
race of the revolute joint.

Consider now the multibody model of the bifilar pendulum shown in
Fig. 7. In essence, the bifilar pendulum consists of two interconnected
fictitious pins rolling on curves of arbitrary shape. First, a curve sliding
joint connects a rigid body of lengthd/2 to curveC1. This rigid body is
attached to a revolute joint whose relative rotation defines the pin angular
motionθ and its time derivativėθ , both measured in the Frenet triad of
the curveC1 at the contact point. This assembly defines the first fictitious
pin.

Next, a second curve sliding joint joins a rigid body of lengthd/2 to
curveC2. This rigid body is connected to a revolute joint whose relative
rotation defines the pin’s angular motionγ and its time derivative ˙γ ,
both measured in the Frenet triad associated withC2 at the contact point.
This assembly defines the second fictitious pin. Finally, the two fictitious
pins are connected to each other at pointP, i.e., the inner races of the
revolute joints that defineθ andγ are attached to each other and define
the tuning pin. By associating the mass properties of the tuning pin with
the inner race of the revolute joint, a dynamically equivalent multibody
representation is achieved.

Dynamic Analysis

Consider first a bifilar pendulum with circular tracking holes of iden-
tical diameterD. The hub rotates at constant angular speedÄ. It is then
easy to show that the linearized equation of motion of the system becomes

1φ̈ + ω2 1φ = 0, (6)

where1φ is a small angular motion of the tuning mass. The natural
frequency of the system,ω, is given by

ω2 = Ä2

 mb +mp
R0

R

mb + mp

2
+ 2I p

d2

 R

D− d
, (7)

whereR= R0+ Rm; mp, mb are the masses of the pin and tuning mass,
respectively; andI p is the pin’s polar moment of inertia. In Sikorsky’s
UH-60, the bifilar pendulum is tuned to a frequencyω= 3P such that it
will absorb the in-plane hub vibration corresponding to a 3P excitation
in the rotating frame. The 3P and 5P harmonics in the rotating system
both contribute to the 4P excitation in the fixed system.

The bifilar pendulum with circular tracking holes of equal diameter
is equivalent to a simple pendulum. As the amplitude of vibration of the
tuning mass increases, the natural frequency of the system changes. In
fact, the periodT of vibration of a simple pendulum of length̀under
gravity g as a function of initial amplitudeθ0 is given by a complete
elliptic integral of the form (Ref. 26)

T = 4

ω

π/2∫
0

dψ√
1− k2 sinψ

, (8)

whereω=√g/` andk= sinθ0/2. For small amplitude vibrations, the
period becomesT = 2π/ω, and is independent of initial amplitude. As
the amplitude of vibration increases, the period increases, the pendulum
is no longer tuned to the desired 3P frequency, and the effectiveness
of the device as a vibration absorber decreases. Consequently, the bifilar
pendulum used in the UH-60 features tracking holes of cycloidal shape for
which the period of the bifilar becomes nearly independent of amplitude.

Formulation of the Curve Sliding Joint

Consider two bodies denoted with superscripts (.)k and (.)`, respec-
tively, linked together by a curve sliding joint as shown in Fig. 8.
Body k is a rigid body whose external shape is described by a spatial
curveC. The orientation of this body is defined by orthonormal bases
S0k := (ek

01, e
k
02, e

k
03) andSk := (ek

1, e
k
2, e

k
3) in the reference and deformed

configurations, respectively. Similarly, two additional orthonormal bases
define the orientation of bodỳ,S0` := (e`01, e

`
02, e

`
03) andS` := (e`1, e

`
2, e

`
3)

in the reference and deformed configurations, respectively.Rk
0 andRk are

the components of the rotation tensors fromS I toS0k andS0k toSk, re-
spectively, both measured inS I . Similarly, R`

0 andR` are the components
of the rotation tensors fromS I to S0` andS0` to S`, respectively, both
measured inS I .

A curve sliding joint involves displacement constraints; optionally,
rotation constraints might be added. The displacement constraints imply
that a point of bodỳ must be in contact with curveC at all times. The

1i
2i

3i

lu

ku
ku0

lu 0 )(* ηp

η
η )( 0
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Fig. 8. Configuration of the curve sliding joint: Displacement
constraints.
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rotation constraints imply that the orientation of body` with respect to
the Frenet triad of the curve at the contact point must remain constant at
all times.

Displacement constraints

Let p∗(η) be the components of the position vector of a point on curve

C measured inSk, and Pk those of the position vector of an arbitrary
point on curveC, measured inS I . It then follows that

Pk = uk
0 + uk + Rk Rk

0 p∗(η). (9)

Similarly, the components of the position vector of the point of body`

in contact with the curve, measured inS I , are

P` = u`0 + u`. (10)

Since bodiesk and` must remain in contact, the following vector con-
straint must be satisfied

C = Pk − P` = u0 + u+ Rk Rk
0 p∗(η) = 0, (11)

whereu0 = uk
0− u`0 andu = uk− u`. These nonlinear holonomic con-

straints are enforced by the addition of a constraint potentialλTC, whereλ
is a set of Lagrange multiplier. The forces of constraintF c corresponding
to this constraint are readily obtained as

λT δC =


δuk

δψk

δu`

δη


T


λ

− ˜[
Rk Rk

0 p∗(η)
]
λ

−λ[
Rk Rk

0 p∗
′
(η)
]T
λ

 =

δuk

δψk

δu`

δη


T

F c, (12)

where (.)′ = d(.)/dη and δ̃ψ
k= δRk RkT is the virtual rotation vector.

Details of the discretization of the constraint forces can be found in
Refs. 23 and 24.

Rotation constraints

The rotation constraints associated with the curve sliding joint im-
ply that the orientation of bodỳ with respect to the Frenet triad of the
curve at the contact point must remain constant at all times. This con-
straint is necessary for modeling the bifilar pendulum, as explained in
earlier sections. Figure 9 shows bodiesk and` connected by means of a
curve sliding joint. Lett∗(η), n∗(η) andb∗(η) be the components of the
unit tangent, normal and binormal vectors to the curve, measured inSk,
respectively. For convenience, the following rotation tensor is defined

R∗(η) = [t∗(η), n∗(η), b∗(η)]. (13)

The unit tangent vector to the curve at the contact point in the reference
configuration, measured inSk, can now be written ast∗0 = R∗(η0) i ∗1,
wherei ∗T1 = b1 0 0c, andη0 denotes the position of the contact point
in the reference configuration. Expressing this vector in the global frame
S I leads to

t0 = Rk
0 t∗0 = Rk

0 R∗(η0) i ∗1. (14)

Similarly, the unit tangent to the curve at the contact point in the deformed
configuration, measured inSk, is t∗ = R∗(η) i ∗1. The components of this

kR0

lR0

lR

kR

*t*n
*b

)(* ηR
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)( 0
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0t
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0b *
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Fig. 9. Configuration of the curve sliding joint: Rotation constraints.

vector in the global frameS I are now

t = Rk Rk
0 t∗ = Rk Rk

0 R∗(η) i ∗1. (15)

Combining Eqs. (15) and (14) then yields a relationship between the
orientations of the unit tangent vectors in the reference and deformed
configurations:

t = Rk Rk
0 R∗(η)R∗T (η0)R

kT
0 t0. (16)

Consequently, the finite rotation tensorRk Rk
0 R∗(η)R∗T (η0)RkT

0 repre-
sents the rotation of the Frenet triad from the reference to the deformed
configuration, measured inS I . As expected, this finite rotation depends
on the location of the point of contact in the reference and deformed
configurations through the rotation tensorsR∗T (η0) and R∗(η); it also
depends on the rotation of bodyk through rotation tensorRk, and on its
initial orientation throughR0.

A similar relationship can be derived for body`

e`1 = R` e`01. (17)

Consequently, the finite rotation tensorR` represents the rotation of body
` from the reference to the deformed configuration, measured inS I . The
rotation constraints associated with the curve sliding joint enforces the
orientation of bodỳ with respect to the Frenet triad of the curve at the
contact point to remain constant at all times. This clearly implies

R` = Rk Rk
0 R∗(η)R∗T (η0)R

kT
0 . (18)

This constraint can be rewritten asR`Rk
0 R∗(η0)R∗T (η)RkT

0 RkT = I ,
where I is the identity tensor. For convenience, this constraint is ex-
pressed inSk as

R̄= R∗T (η)RkT
0 RkT R`Rk

0 R∗(η0) = I . (19)

Since R̄ is an orthogonal tensor, this constraint corresponds to three
independent scalar constraints only R̄32− R̄23

R̄13− R̄31

R̄21− R̄12

 = 0. (20)

For convenience, the following vectors are defined

j k
α
= Rk Rk

0 R∗(η) i α; j `
α
= R`Rk

0 R∗(η0) i α, α = 1, 2, 3. (21)
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and Eq. (20) becomes
j kT

3
j `

2
− j kT

2
j `

3

j kT
1

j `
3
− j kT

3
j `

1

j kT
2

j `
1
− j kT

1
j `

2

 = 0. (22)

These three scalar constraints correspond to constraining the relative rota-
tion of body`with respect to the Frenet triad about the local tangent, nor-
mal, and binormal directions, respectively. These nonlinear holonomic
constraints each are of the form

C = j kT
α

j `
β
− j kT

β
j `
α
; α 6= β. (23)

The forces of constraintFc corresponding to this constraint are readily
obtained as

λ δC =

 δψ
k

δψ`

δη


T


λ
(̃

j k
α j `

β
− j̃ k

β j `
α

)
− λ

(̃
j k
α j `

β
− j̃ k

β j `
α

)
λ
(

j lT
β

j k′
α
− j lT

α
j k′
β

)
 =

 δψ
k

δψ`

δη


T

F c, (24)

where δ̃ψ
k= δRk RkT and δ̃ψ

`= δR`R`T are the virtual rotation vec-
tor for body k and `, respectively; j k′

α
= Rk Rk

0 R∗′(η) i α; and j k′
β
=

Rk Rk
0 R∗′(η) i β . The notation (.)′ is used to denote a derivative with re-

spect toη. Details of the discretization of the constraint forces can be
found in Refs. 23 and 24.

The rolling constraints shown in Eq. (5) were written in terms of
the curvilinear coordinatess1 ands2 of the corresponding curves. How-
ever, the NURBS representation of curves (Refs. 20, 21) makes use of
the nondimensional parameterη∈ [0, 1] to parameterize curves. Conse-
quently, an additional scalar constraint relating these variables is neces-
sary. This constraint is easily cast as a nonlinear, nonholonomic constraint

C = ṡ− |p∗′(η)| η̇ = 0. (25)

Numerical Examples

Validation example

As a validation example, consider the system depicted in Fig. 10.
A small collar of massm slides without friction under the effect of
gravity g on two different curves: a circle and a cycloid. The circle
is of radius R and the cycloid is described by the functionp(t)=
a(t + sint) i 1−a(1+ cost) i 2, wherea is a constant andt ∈ [−π, π ]

Circular Curve
1i

2i

2i

R
θ

Cycloidal Curve
1i

)(tr

θ

g

g

Fig. 10. Validation example for circular and cycloidal curves.

is the curve parameter. The collar position is described by angleθ de-
fined in Fig. 10. The collar is initially at rest with an angular positionθ0.
The system was modeled using a curve sliding joint that connected the
collar to the curve.

The physical properties of the system are as follows: collar mass
m= 2.0 kg, radiusR= 1.0 m, cycloid constanta= 0.25 m, and accel-
eration of gravityg= 9.81 m/sec2. Two cases were considered for each
curve, denotedcase 1and2, corresponding to collar polar moments of
inertia I p= 0 and 0.25 kg·m2, respectively. Incase 2, the collar is no
longer a point mass; the rotation constraint associated with the curve
sliding joint impart an angular velocity to the collar as it slides along the
curve and an additional kinetic energy component arises. Forcase 1, the
period of oscillationT for the collar sliding on the circle is a function of
initial amplitudeθ0 given by Eq. (8) withω=√g/R. On the other hand,
the period of oscillation for the cycloid is a constant (Ref. 26)

T = 4 π
√

a

g
. (26)

Figure 11 compares the analytical and numerical results. Excellent agree-
ment between analytical and numerical results is observed for both cir-
cular and cycloidal curves.

Forcase 2, the period of oscillation for the collar on the circle is given
by Eq. (8) withω=√(1+ ρ2/R2) g/R, whereρ is the radius of gyration
of the collar. The period of oscillation of a point mass on a cycloid was
found to be

T = 4

√
2a

g

1∫
0

√√√√√ 1

2
+ 1

16

(ρ
a

)2 1

2− (y0/a)u
u− u2

du, (27)

wherey0 is the initial vertical position of the collar. Figure 12 compares
the analytical and numerical predictions; excellent correlation is found.
Clearly, the period of oscillation for the cycloid is dependent on the
initial position of the collar, however, forθ0 ≤ 50 deg, it remains nearly
constant.
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Fig. 11. Periods of oscillation for a point mass (case 1) on a circle:
analytical results, Eq. (8), solid line; numerical results, (+). Periods
of oscillation for a point mass (case 1) on a cycloid: analytical results,
Eq. (26), dashed line; numerical results, (◦).



JANUARY 2003 MODELING THE BIFILAR PENDULUM USING NONLINEAR, FLEXIBLE MULTIBODY DYNAMICS 59

0 10 20 30 40 50 60 70 80 90
2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

P
E

R
IO

D
 [

se
c]

INITIAL AMPLITUDE θ
0
 [deg]

Fig. 12. Periods of oscillation for a body (case 2) on a circle: analytical
results, Eq. (8), solid line; numerical results, (+). Periods of oscillation
for a body (case 2) on a cycloid: analytical results, Eq. (27), dashed
line; numerical results, (◦).

45 deg

Bifilar Pendulum Arrangement

Main Rotor

Fuselage-Beam
1i

2i
3i

Fig. 13. Arrangement of the bifilar pendulums on a four-bladed rotor.

Four bladed rotor analysis

Next, a practical example is described: Sikorsky’s UH-60 helicopter
with hub mounted bifilar pendulums. The UH-60 is a four-bladed he-
licopter whose physical properties are described in Ref. 27 and refer-
ences therein. Figure 13 shows the helicopter configuration used in the
present simulation. The main rotor is connected to a nonrotating beam
clamped to the ground that models the elasticity of the fuselage and shaft.
This beam will be denoted the fuselage-beam. Four bifilar pendulums are
rigidly connected to the hub. Each bifilar pendulum makes a 45 deg angle
with respect to the nearest blade. A detailed description of the physical
properties of the bifilar pendulum used in the present analysis can be
found in Refs. 2 and 4. Each blade was modeled using six cubic beam
elements, and the flap, lag, and pitching hinges by revolute joints. Each
bifilar pendulum was modeled with a combination of revolute, curve
sliding, and planar joints, as described in earlier sections. The aerody-
namic forces acting on the system were computed based on the unsteady,
two-dimensional airfoil theory developed by Peters et al. (Ref. 28), and
the three-dimensional unsteady inflow model developed by Peters and
He (Ref. 29). During the simulation, the control inputs were set to the

Table 1. Description of the various cases

Case Bifilar Bifilar Fuselage-Beam
Number Behavior Frequency Stiffness

0 Locked N/A Nominal
1 Free 3P Nominal
2 Free 3.3P Nominal
3 Free 3P 0.5× nominal

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−8

−6

−4

−2

0

2

4

6

8

TIME [rev]

P
IN

 A
N

G
L

E
 [

d
eg

]

Fig. 14. Time history of the pin angles forcase 1: pin A solid line;
pin B (180 degrees apart) dashed-dotted line.

following values, termed standard control inputs: collectiveθ0= 10.7
deg, longitudinal cyclicθs=−4.9 deg, lateral cyclicθc= 4.7 deg. The
helicopter was in a forward flight at a speed ofU = 150 ft/sec.

Three cases, denotedcase 0through2 were considered.Case 0is
the baseline case. The bifilars were mounted on the hub, however, the
relative motion of the each bifilar mass with respect to the hub frame
was prevented. Incase 1, the bifilar mass was allowed to move and
the pendulum was tuned to a frequency of 3P. Case 2is identical to
case 1except that frequency of the bifilar pendulum was increased by
10%. Table 1 summarizes the various cases studied in this example. The
simulations were run for several main rotor revolutions until a periodic
solution was reached. The figures presented below show the response of
the rotor for one period, once the periodic solution is achieved.

Figure 14 shows the pin angleφ for two bifilar pendulums separated by
180 deg. The pin angleφ is defined as follows: a straight line connecting
the center of the circular pin to the center of its tracking hole makes
an angleφ with the bifilar’s support arm, see Fig. 1. Clearly, the pin
angle responses for the two bifilar pendulums are 180 deg out-of-phase,
reaching a maximum amplitude of 7 deg. Each pin response is at a 3P
frequency, as expected. Obviously, the pin angles forcase 0are zero.
Figure 15 depicts the motion of the hub in the rotor plane and the motion
of the center of mass of the four bifilars tuning masses forcases 0and1.
In case 0, since the tuning masses are locked in place, the motion of their
center of mass is identical to that of the hub. Clearly, there is a significant
reduction in hub displacement amplitude when comparingcases 0and
1, indicating that the bifilar pendulums are quite effective.

As mentioned earlier, the bifilar pendulums are tuned at a 3P fre-
quency in order to absorb in-plane hub vibrations resulting from a 3P
excitation in the rotating frame. The 3P and 5P harmonics in the rotating
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Fig. 16. Time history of the fuselage-beam root bending moments in
the fixed system,M11, (◦), and M22, (+). Case 0: dashed-dotted line;
case 1: solid line.

system contribute to the 4P excitation in the fixed system. When the bi-
filars are active, the center of mass of their tuning masses describes a
circular path that completes four revolutions per main rotor revolution,
i.e., the fixed system response is at a 4P frequency. In essence, the bi-
filar pendulums act as simple vibration absorbers. Due to the motion of
their center of mass, a force is applied on the hub at the excitation fre-
quency but out-of-phase with the excitation forces. Consequently, hub
displacements are small compared to those of the center of mass of the
four bifilars, as observed from Fig. 15. Figure 16 depicts the fuselage-
beam root bending moments in the fixed system forcases 0and1. In the
caption of these figures,M11 andM22 are root bending moment in fuse-
lage x and y directions respectively. As expected, the response is at a 4P
frequency. The effectiveness of the bifilar pendulums is clearly demon-
strated: the amplitude of the response is reduced drastically fromcase 0
to case 1.
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Fig. 17. Fourier harmonics of the inertial hub displacements ex-
pressed in the rotating frame forcase 0: white bars and case 1: black
bars.
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Fig. 18. Fourier harmonics of the hub in-plane forces expressed in
the fixed system forcase 1: black bars and case 2: white bars.

Figure 17 shows the Fourier harmonics of the inertial hub displace-
ments expressed in the rotating frame, forcases 0and1. As expected, the
bifilar pendulums reduce the 3P response almost completely. Figure 18
depicts the Fourier harmonics of the hub in-plane forces which include
both contributions from rotor and bifilar expressed in the fixed system,
for cases 1and2. Case 1corresponds to the “tuned bifilar” (tuned to
the 3P frequency), whereascase 2is the “detuned bifilar” case (10%
above the 3P frequency). Clearly, detuning drastically degrades bifilar
performance and hence, it is important to use cycloidal shaped tracking
holes to keep the pendulum tuned at all amplitudes.

The proposed multibody formulation provides a rigorous model of
the bifilar pendulum. Present industry practice is to replace the bifilar
pendulum by an equivalent, single degree of freedom oscillator in the
fixed system. Such models are inherently linearized approximations of
the bifilar dynamic behavior and cannot capture the effects associated
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Fig. 19. Fourier harmonics of the hub in-plane forces expressed in
the fixed system forcase 1: black bars and case 3: white bars.

with tracking holes of arbitrary shape. The present simulation is of a
qualitative, not quantitative nature: several aspects of the model must be
improved to obtain accurate predictions. First, a more sophisticated aero-
dynamic model should be used. Similarly, the structural dynamics model
was simplified: control linkages such as the pitchlinks and swashplates
were not modeled. Finally, the fuselage-beam model is a very crude ap-
proximation to the fuselage dynamic behavior: fuselage inertia properties
were not taken into account and its stiffness characteristics were greatly
simplified. Figure 19 shows the Fourier harmonics of the hub in-plane
forces expressed in the fixed system, forcases 1and3. Case 1corre-
sponds to the baseline case andcase 3is identical tocase 1except for
the fuselage-beam bending stiffnessE I33 that was reduced by a factor of
two, see Table 1. Clearly, there are significant differences between both
cases: the in-plane force harmonics are increased by 20% fromcase 1
to 3. This points out the need for an accurate model of the elastic and
inertial characteristics of the fuselage for accurate hub load predictions.

Conclusions

A model of the bifilar pendulum has been presented within the frame-
work of flexible, nonlinear multibody dynamics. A detailed model of
the system involved a series of nonlinear holonomic and nonholonomic
constraints. This work was developed within the framework of energy
preserving and decaying time integration schemes that provide uncondi-
tional stability for nonlinear, flexible multibody systems.

The proposed formulation required the development of a curve sliding
joint, that seems, at first sight, unrelated to a bifilar pendulum. However,
it was shown that the curve sliding joint combined with other joints,
such as the revolute joint, provides an effective modeling tool for the
bifilar pendulum. This approach, the combination of a number of basic
kinematic joints to construct realistic models of complex hardware com-
ponents, provides a powerful tool for the detailed modeling of rotorcraft
systems. The ability to model new configurations of arbitrary topology
through the assembly of basic components chosen from an extensive li-
brary of elements is highly desirable. In fact, this approach is at the heart
of the finite element method which has enjoyed, for this very reason, an
explosive growth in the last few decades.

The present formulation results in a kinematically and dynamically
exact model of the bifilar pendulum, under the assumption of rolling
contact between the tuning pins and tracking holes. The formulation is
valid for arbitrarily shaped tracking holes. The effectiveness of the bifilar
pendulum for various shapes of the tracking hole could be investigated
with the proposed formulation. The numerical examples presented in
the paper demonstrated the validity of the proposed formulation from a
qualitative standpoint: dramatic reduction in 3P vibration for a bifilar
tuned at 3P. Improvements in the aerodynamic, structural dynamics,
and fuselage models are necessary to obtain accurate predictions of hub
loads.
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