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Abstract

This paper is concerned with the modeling of nonlinear elastic multi-body systems
discretized using the finite element method. The formulation uses Cartesian coordi-
nates to represent the position of each elastic body with respect to a single inertial
frame. The kinematic constraints among the various bodies of the system are enforced
via the Lagrange multiplier technique. The resulting equations of motion are stiff,
nonlinear, differential-algebraic equations. The integration of these equations presents
a real challenge as most available techniques are either numerically unstable, or present
undesirable high frequency oscillations of a purely numerical origin. An approach is
proposed in which the equations of motion are discretized so that they imply an energy
decay inequality for the elastic components of the system, whereas the forces of con-
straint are discretized so that the work they perform vanishes exactly. The combination
of these two features of the discretization guarantees the stability of the numerical in-
tegration process for nonlinear elastic multi-body systems and provides high frequency
numerical dissipation. Examples of the procedure are presented and compared with
other available methodologies.
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1 Introduction

This paper is concerned with the analysis of nonlinear elastic multi-body systems, i.e. a
collection of bodies in arbitrary motion with respect to each other while each body is under-
going large displacements and rotations with respect to a body attached frame of reference.
The focus is on problems where the strains within each elastic body remain small.

Each elastic body is modeled using the finite element method. The use of beam elements
will be demonstrated in this work. The location of each node is represented by its Carte-
sian coordinates in an inertial frame, and the rotation of the cross-section at each node is
represented by a finite rotation tensor expressed in the same inertial frame. The kinematic
constraints among the various bodies are enforced via the Lagrange multiplier technique.
Though this approach does not involve the minimum set of coordinates [1], it allows a mod-
ular development of finite elements for the enforcement of the kinematic constraints. The
representation of the displacements and rotation quantities in a single inertial frame remark-
ably simplifies the expression for the kinetic energy, as demonstrated by Simo [2].

The equations of motion resulting from the modeling of multi-body systems with the
above methodology presents distinguishing features: they are stiff, nonlinear, differential-
algebraic equations. The stiffness of the system stems from the presence of high frequencies
in the elastic members, but also from the infinite frequencies associated with the kinematic
constraints. Indeed, no mass is associated with the Lagrange multipliers giving rise to
algebraic equations coupled to the other equations of the system which are differential in
nature.

The time integration of the resulting equations of motion give rise to a number of problems
such as numerical instabilities and high frequency oscillations of a purely numerical origin. A
thorough review of time integration schemes used in structural dynamics is found in [3]. The
Newmark scheme [4] is a widely used scheme to integrate the equations of motion resulting
from finite element discretizations. Geradin and Cardona [5] have shown that this scheme
presents a weak instability when applied to constrained multi-body systems. The culprit is
the presence of algebraic equations which are equivalent to infinite frequencies.

The Hilber-Hughes-Taylor (HHT) [6] scheme was introduced to eliminate the high fre-
quency oscillations of a purely numerical origin resulting from the use of the Newmark scheme
for large finite element problems. The HHT scheme alleviates this problem by introducing
high frequency numerical dissipation. Geradin and Cardona [5] have shown that the use of
the HHT scheme in constrained multi-body problems can yield satisfactory system response.
This approach, however, cannot be proven to be stable for nonlinear system. Numerical
oscillations are observed in the time history response of accelerations, Lagrange multipliers,
and velocities, though to a lesser extent. However, these high frequency oscillations are
rapidly damped out. As the complexity of the constrained multi-body system increases, an
increasing amount of numerical dissipation is required to avoid numerical instabilities and
high frequency oscillations.

An alternate approach was followed by Bauchau [7]. Discretized equations of motion for
the dynamic response of elastic beams were presented that imply preservation of the total
energy. Discretized constraint forces corresponding to the kinematic constraints associated
with a revolute joint were derived and shown to perform no work during the evolution of
the system. The combination of the above features of the model guarantees unconditional
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stability of the overall integration process for multi-body systems as it implies preservation
of the total energy of the system [8]. Though energy preserving schemes perform well, their
lack of high frequency numerical dissipation can be a problem [7]. First, the time histories of
internal forces and velocities can present a very significant high frequency content. Second,
it seems that the presence of high frequency oscillations can hinder the convergence process
for the solution of the nonlinear equations of motion. This was observed in several examples
where the dynamic response of the system does involve significant high frequency content.
The selection of a smaller time step does not necessarily help this convergence process, as
a smaller time step allows even higher frequency oscillations to be present in the response.
Finally, it seems that the presence of high frequency oscillations also renders strict energy
preservation difficult to obtain. This could prove to be a real limitation of energy preserving
schemes when applied to elastic multi-body systems.

To alleviate this situation, an energy decaying scheme for nonlinear beam structures
was introduced by Bauchau [9]. The scheme is related to the time discontinuous Galerkin
method and presents the following features. First, an energy decay inequality provides a
rigorous proof of unconditional stability of the scheme. Second, numerical experimentation
indicates that the salient features of the underlying time discontinuous Galerkin method are
inherited by the scheme. In particular, high frequency numerical dissipation with asymptotic
annihilation is achieved. The use of an energy decaying scheme is particularly desirable when
dealing with constrained multi-body systems. Indeed, typical multi-body systems comprise
elastic members and a number of joints, which, from a modeling standpoint, can be viewed
as kinematic constraints that must be satisfied together with the differential equations of
motion of the elastic members. The presence of multiple constraints in multi-body system
renders the system very stiff and increases the need for unconditionally stable integration
schemes presenting high frequency numerical dissipation.

This paper addresses the problem of the enforcement of kinematic constraints within
the framework of energy decaying schemes. A methodology that can systematically lead
to an energy decay inequality is the time discontinuous Galerkin method [10] which was
initially developed for hyperbolic equations. Unfortunately, it does not seem possible to
cast the nonlinear beam equations of motion nor the kinemetic constraints equations in the
required first order symmetric hyperbolic form. To circumvent this problem in the case of a
nonlinear beam problem, an energy decay inequality was obtained by a direct computation
of the work done by the inertial and elastic forces [9]. A similar path will be followed for
the constraint equations: the forces of constraint will be discretized in such a way that the
work they perform exactly vanishes when the constraint condition is exactly enforced. This
way of proceeding has two advantages: first, the constraint condition is exactly enforced,
and second, the energy decay inequality which guarantees the unconditional stability of the
scheme is not upset by spurious numerical work performed by the forces of constraint.

The paper is organized in the following manner. The basic time discontinuous Galerkin
approximation for a single degree of freedom linear oscillator is presented in section (2.1),
together with an alternate proof of stability based on a direct computation of the work per-
formed by the inertial and elastic forces (2.2). Several ways of enforcing constraint equations
will be presented in section (4) for a simple pendulum example. In section (5) the procedure
will be repeated for the much more complicated constraints corresponding to the revolute
joint. Several numerical examples are presented in section (6); conclusions are presented in
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the last section.

2 Time discontinuous Galerkin approximation for a

single dof system.

2.1 Time discontinuous Galerkin scheme.

Consider a linear, single degree of freedom spring mass system, of which the equation of
motion is given as:

mü(t) + ku(t) = F (t), (1)

where u(t) is the displacement of the mass m, k the spring stiffness, F (t) the excitation

force, and ˙( ) denotes a time derivative. Introducing the momentum p = mu̇ leads to the
following two equations which are in the symmetric hyperbolic form:

ṗ + ku = F ; u̇− p

m
= 0.

A time discontinuous Galerkin approximation of these equations between the initial and final
times tn and tn+1 (see figure 1) , respectively writes:

∫ t−n+1

t+n

{
w1

(
u̇− p

m

)
+ w2 (ṗ + ku− F )

}
dt

+ w+
1n

(
u+

n − u−n
)

+ w+
2n

(
p+

n − p−n
)

= 0 . (2)

where w1 and w2 are test functions, and the notations ( )−n , ( )+
n and ( )−n+1 are used to

indicate the corresponding quantities at t−n , t+n and t−n+1, respectively. Integrating eq. (2) by
parts yields:

∫ t−n+1

t+n

(
−ẇ1u− w1

p

m
− ẇ2p + w2ku− w2F

)
dt

+ w−
1 n+1u

−
n+1 + w−

2 n+1p
−
n+1 − w+

1 nu−n − w+
2 np−n = 0 . (3)

A linear in time approximation over the time step is used to discretize the unknowns u
and p, the test functions w1 and w2, and the excitation force F . The resulting discretized
equations of motion are readily found by integrating (3) to find:

m
u̇−n+1 + u̇+

n

2
−mu̇−n

∆t
+ k

u−n+1 + 2u+
n

6
=

F+
n

3
+

F−
n+1

6
;

mu̇−n+1 −m
u̇−n+1 + u̇+

n

2
∆t

+ k
2u−n+1 + u+

n

6
=

F+
n

6
+

F−
n+1

3
;
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u−n+1 + u+
n

2
− u−n

∆t
=

u̇−n+1 + 2u̇+
n

6
;

u−n+1 −
u−n+1 + u+

n
2

∆t
=

2u̇−n+1 + u̇+
n

6
.

These four equations may be combined in a linear fashion to yield:

mu̇−n+1 −mu̇−n
∆t

+ kem =
F+

n + F−
n+1

2
; (4)

mu̇+
n −mu̇−n
∆t

+ kej =
F+

n − F−
n+1

6
; (5)

u−n+1 − u−n
∆t

=
u̇−n+1 + u̇+

n

2
; em =

u−n+1 + u+
n

2
; (6)

u+
n − u−n
∆t

= − u̇−n+1 − u̇+
n

6
; ej = −u−n+1 − u+

n

6
. (7)

Equations (4) to (7) defines a time discontinuous approximation of the equation of motion
of the system, eq. (1). The unconditional stability of the scheme can be proved based on
the energy decay inequality that follows from the theory of the time discontinuous Galerkin
method applied to hyperbolic conservation laws [12, 13].

This can be confirmed by a conventional analysis of the scheme based on the character-
istics of the amplification matrix. The period elongation is ∆T

T
= ω4∆t4

270
+ O(ω6∆t6), while

the algorithmic damping is ζ = ω3∆t3

72
+ O(ω5∆t5), where ω2 = k/m. Hence, the scheme is

third-order accurate.

2.2 Stability proof based on an energy argument.

An alternate way of proving the unconditional stability is based on a direct computation
of the work done by the inertial and elastic forces which will be shown to imply an energy
decay inequality. The total energy of the system is E(u) = K(u̇) + V (u), where the kinetic
energy is K(u̇) = 1

2
mu̇2 and the potential energy V (u) = 1

2
ku2. The change in total energy

over a time step can be evaluated by computing the work done by the inertial and elastic
forces. The discretized equation of motion (4) is multiplied by a displacement increment to
yield: (

u−n+1 − u−n
∆t

)
mu̇−n+1 −mu̇−n

∆t
+

(
u−n+1 − u−n

∆t

)
k
u−n+1 + u+

n

2
=

∆Wm

∆t
.

where ∆Wm is the work done by the applied loads. With the help of eq. (6), this can be
rewritten as:

(
u̇−n+1 + u̇−n

2

)
mu̇−n+1 −mu̇−n

∆t
+

(
u−n+1 − u−n

∆t

)
k
u−n+1 + u+

n

2
=

∆Wm

∆t
,
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and simplifies to:

E
(
u−n+1

)− E
(
u−n

)
+ E

(
u+

n − u−n
)

+
1

2
(u̇+

n − u̇−n )m(u̇−n+1 − u̇+
n ) +

1

2
(u+

n − u−n )k(u−n+1 − u+
n ) = ∆Wm. (8)

Next, the discretized equation of motion (5) is multiplied a displacement increment across
the jump to find:

(
u+

n − u−n
∆t

)
mu̇+

n −mu̇−n
∆t

+

(
u+

n − u−n
∆t

)
k
u+

n − u−n+1

6
=

∆Wj

∆t
,

where ∆Wj is the work done by the applied loads. Using eq. (7), the above equation rewrites
as: (

u̇+
n − u̇−n+1

6

)
mu̇+

n −mu̇−n
∆t

+

(
u+

n − u−n
∆t

)
k
u+

n − u−n+1

6
=

∆Wj

∆t
,

and simplifies to:

− 1

6
(u̇+

n − u̇−n )m(u̇−n+1 − u̇+
n )− 1

6
(u+

n − u−n )k(u−n+1 − u+
n ) = ∆Wj. (9)

Finally, a linear combination of eqs. (8) and (9) yields the following energy statement:

E
(
u−n+1

)− E
(
u−n

)
+ E

(
u+

n − u−n
)

= ∆Wm + 3∆Wj (10)

In the absence of externally applied loads, the following energy decay characteristic of the
scheme is established:

E
(
u−n+1

)
= E

(
u−n

)− E
(
u+

n − u−n
)
, ⇒ E

(
u−n+1

) ≤ E
(
u−n

)
. (11)

This energy decay inequality provides an alternate proof of the unconditional stability of the
scheme. Equation (11) implies exact preservation of energy when the energy associated with
the jump (E (u+

n − u−n )) is zero. This can be achieved by enforcing continuity of displacement
and momentum at the inter-element boundary. In that case the (unconditionally stable)
average acceleration scheme is recovered.

3 An energy decaying scheme for beams.

The above time discontinuous Galerkin approximation for a simple linear oscillator is the
basis of an energy decaying scheme for nonlinear beam models, see [9] for details. An energy
decay inequality of the form of (11) was established, proving the unconditional stability of the
scheme for nonlinear dynamic problems. Various ways of enforcing the kinematic constraints
within the framework of energy decaying schemes are now discussed using a simple example.
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4 Enforcement of constraint equations.

Consider a pendulum consisting of a particle of mass m constrained to move along a circle of
radius R under the effect of gravity forces. This system can be analyzed as a single degree of
freedom with θ as generalized coordinate. It can also be viewed as a two degree of freedom
problem, namely x and y defining the position of the particle, subjected to the nonlinear
constraint

C(u) =
1

2
(uT u−R2) = 0, (12)

where uT = bx yc. The equations of motion are readily found as

mü + sλu = mg (13)

where λ is the Lagrange multiplier used to enforce the constraint, s a scaling factor, and g
the gravity vector. The problem at hand is to obtain an energy decaying scheme to solve
(13), subjected to constraint (12). It does not appear to be possible to write these equations
in the symmetric hyperbolic form that would then be amenable to a time discontinuous
Galerkin treatment leading to an energy decay inequality [12, 13]. Two approaches will be
investigated corresponding to constant, or linear in time approximations for the Lagrange
multiplier, respectively.

4.1 Constant in time Lagrange multiplier.

If the Lagrange multiplier λ is constant over a time step, the equations of motion of the
problem (13) become formally identical to that of the linear oscillator (1), with sλ replacing
the spring stiffness k. This suggests the following discretization, inspired by eqs. (4) to (7)

mu̇−n+1 −mu̇−n
∆t

+ sλ
u−n+1 + u+

n

2
= mg; (14)

mu̇+
n −mu̇−n
∆t

− sλ
u−n+1 − u+

n

6
= 0; (15)

u−n+1 − u−n
∆t

=
u̇−n+1 + u̇+

n

2
;

u+
n − u−n
∆t

= − u̇−n+1 − u̇+
n

6
. (16)

This discretization does not account for the presence of the constraint (12). Proceeding
in a manner identical to that outlined in section (2.2) leading to equation (10), the work
performed by the inertial and constraint forces is now computed. This yields the following
energy related statement:

E(u−n+1)− E(u−n ) + 1
2
(u̇+T

n − u̇−T
n )m(u̇+

n − u̇−n )

+sλ
(C(u−n+1)− C(u−n )

)
+ sλ

2

(
u+T

n − u−T
n

)
(u+

n − u−n ) = 0. (17)

The total energy of the system is now E(u) = K(u̇) + P (u), where the kinetic energy is
K(u̇) = 1

2
mu̇T u̇ and the potential energy P (u) = −muT g.
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Energy statement (17) suggests the following procedure. Let the discretized constraint
condition be

C(u−n+1)− C(u−n )

∆t
= 0, (18)

which clearly corresponds to a weak enforcement of constraint (12), written as Ċ = 0 at the
midpoint time. To avoid the drift phenomenon associated with the enforcement of eq. (18)
it is preferable to enforce

C(u−n+1) = 0 (19)

at each step, implying eq. (18). Introducing (18) in the energy statement yields

E(u−n+1)− E(u−n ) + 1
2
(u̇+T

n − u̇−T
n )m(u̇+

n − u̇−n )

+sλ
2

(
u+T

n − u−T
n

)
(u+

n − u−n ) = 0. (20)

Unfortunately, this energy statement does not imply an energy decay inequality of the type
E(u−n+1) ≤ E(u−n ) which is necessary to guarantee the unconditional stability of the scheme
because the Lagrange multiplier λ can be a positive or negative quantity, in contrast with
the mass m which is always positive. In other words, this approach enforces the discrete
constraint equation (19) exactly, but could lead to numerical instability. This is clearly an
unacceptable approach.

A better way to proceed is to remember the well known fact that the forces of constraint
perform no work during the dynamic response of the system. This work is given by the last
two terms of (17). Hence, the work done by the discretized forces of constraint also vanishes
if the discretized constraint condition is selected as

C(u−n+1)− C(u−n ) +
1

2

(
u+T

n − u−T
n

) (
u+

n − u−n
)

= 0. (21)

Introducing this constraint into the energy statement (17) then yields the following energy
decay inequality

E(u−n+1) = E(u−n )− 1

2
(u̇+T

n − u̇−T
n )m(u̇+

n − u̇−n ), ⇒ E(u−n+1) ≤ E(u−n ). (22)

In other words, this approach is shown to be unconditionally stable, but an approximate
constraint condition (21) is enforced. Since the jump term is a small quantity of order (∆t)2

this approximate constraint condition can be written as

C(u−n+1)− C(u−n )

∆t
= −1

2
α2O(∆t3) (23)

which clearly implies a significant drift of the constraint condition as the integration proceeds.
Such a drift is not a desirable feature of the algorithm. Though acceptable in some case,

drifting constraint might lead to large errors in general multi-body systems. Consider, for
instance, a simple system consisting of a long beam with a revolute joint at one end. The
axis of rotation of the revolute joint is fixed in space. If this kinematic constraint is allowed
to drift in time, small angular motion of the revolute joint axis will result. Though this local
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error might well be acceptable, the resulting error at the free end of the beam might become
large.

Within the approximation of a constant in time Lagrange multiplier, it does not seem
possible to obtain an unconditionally stable algorithm that enforces the constraint condition
exactly.

4.2 Linear in time Lagrange multiplier.

If the Lagrange multiplier λ is linear over a time step, the following discretization is proposed:

mu̇−n+1 −mu̇−n
∆t

+
u−n+1 + u−n

2
s
λ−n+1 + λ+

n

2
= mg; (24)

mu̇+
n −mu̇−n
∆t

− u+
n + u−n

2
s
λ−n+1 − λ+

n

6
= 0; (25)

u−n+1 − u−n
∆t

=
u̇−n+1 + u̇+

n

2
;

u+
n − u−n
∆t

= − u̇−n+1 − u̇+
n

6
, (26)

which is once more directly inspired by eqs. (4) to (7). This discretization does not account
for the presence of the constraint (12). Proceeding in a manner similar to that outlined in
section (2.2) leading to equation (10), the work performed by the inertial and constraint
forces is now computed. This yields the following energy related statement:

E(u−n+1)− E(u−n ) + 1
2
(u̇+T

n − u̇−T
n )m(u̇+

n − u̇−n )

+
(C(u−n+1)− C(u−n )

)
s
λ−n+1 + λ+

n

2
− (C(u+

n )− C(u−n )
)
s
λ−n+1 − λ+

n

2
= 0 (27)

where the last two terms correspond to the work done by the discretized forces of constraints.
The discretized constraint conditions are selected so that this work vanishes, i.e.

C(u−n+1)− C(u−n )

∆t
= 0;

C(u+
n )− C(u−n )

∆t
= 0. (28)

which clearly correspond to a weak enforcement of constraint (12), written as Ċ = 0, at the
time step and jump midpoints, respectively. To avoid the drift phenomenon associated with
the enforcement of eqs. (28) it is preferable to enforce

C(u+
n ) = 0; C(u−n+1) = 0, (29)

at each step, implying eqs. (28). Introducing (28) in the energy statement yields the energy
decay inequality (22). This approach is now unconditionally stable and exactly enforces the
constraint condition at times t+n and t−n+1.

5 Constraint equations for a revolute joint.

Consider two bodies denoted “k” and “l” linked at a node by a revolute joint (see figure 2).
In the undeformed configuration, the revolute joint is defined by two coincident triads Sk

0
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and S l
0 with unit vectors ~ek

0i = ~el
0i. After deformation, the revolute joint is defined by two

distinct triads Sk and S l with unit vectors ~ek
i and ~el

i, respectively. Let the rotation matrices
from S to Sk

0 = S l
0, Sk

0 to Sk, and S l
0 to S l be R0, Rk, and Rl, respectively, all measured in

S. The kinematic constraint corresponding to a revolute joint is the coincidence of ~ek
3 and

~el
3. This can be written

CT =
⌊ C1 C2 C3

⌋
= 0, (30)

where
C1 = elT

1 ek
3; C2 = elT

2 ek
3; C3 =

(
ekT
1 el

1

)
sin φ +

(
ekT
1 el

2

)
cos φ. (31)

The third constraint C3 defines the relative rotation angle φ. These constraints are en-
forced via a Lagrange multiplier technique. The forces of constraint associated with these
constraints are:

fk = sλ1ẽk
3e

l
1 + sλ2ẽk

3e
l
2 + sλ3ẽk

1

(
sin φ el

1 + cos φ el
2

)

f l = − sλ1ẽk
3e

l
1 − sλ2ẽk

3e
l
2 − sλ3ẽk

1

(
sin φ el

1 + cos φ el
2

)
(32)

fφ = sλ3e
kT
1

(
cos φ el

1 − sin φ el
2

)

where fk and f l are the constraint moments applied on body “k” and “l”, respectively, and

fφ the constraint force associated with the degree of freedom φ; λ1, λ2, and λ3 the Lagrange
multipliers used to enforce the constraint C1, C2, and C3, respectively, and s a scaling factor.

Discretization (C1) (see Appendix C) is applied first over the time step, i.e. from t−n to
t−n+1, for the forces of constraint associated with C1:

fk

1
= s

λ−1,n+1 + λ+
1,n

2

(
G̃k

mi3

)
Hl

mi1; f l

1
= s

λ−1,n+1 + λ+
1,n

2

(
G̃l

mi1

)
Hk

mi3. (33)

where the subscript m refers to the time step midpoint. Discretization (C1) is then applied
across the jump, i.e. from t−n to t+n :

fk

1
= −s

λ−1,n+1 − λ+
1,n

6

(
G̃k

j i3

)
Hl

ji1; f l

1
= −s

λ−1,n+1 − λ+
1,n

6

(
G̃l

ji1

)
Hk

j i3. (34)

where the subscript j refers to the jump “midpoint”. Similar expressions hold for the forces
of constraint fk

2
and f l

2
corresponding to constraint C2.

Discretization (C6) is now used for the forces of constraint corresponding to constraint
C3 over the time step:

fk

3
= s

λ−3,n+1 + λ+
3,n

2

(
G̃k

mi1

)
Hl

mvφ; f l

3
= s

λ−3,n+1 + λ+
3,n

2

(
G̃l

mvφ

)
Hk

mi1;

fφ
3 = s

λ−3,n+1 + λ+
3,n

2
(εm1 cos φm − εm2 sin φm), (35)

then across the jump:

fk

3
= −s

λ−3,n+1 − λ+
3,n

6

(
G̃k

j i1

)
Hl

jvφ; f l

3
= −s

λ−3,n+1 − λ+
3,n

6

(
G̃l

jvφ

)
Hk

j i1;

fφ
3 = −s

λ−3,n+1 − λ+
3,n

6
(εj1 cos φj − εj2 sin φj). (36)
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Proceeding as for the pendulum case, the work done by the discretized forces of constraint
∆Wconst during a time step is computed using relationships (C5) and (C9) to find:

∆Wconst

∆t
= s

λ−T
n+1 + λ+T

n

2

C−n+1 − C−n
∆t

− s
λ−T

n+1 − λ+T
n

2

C+
n − C−n
∆t

.

Clearly the work done by the discretized forces of constraint vanishes if

C−n+1 − C−n
∆t

= 0;
C+

n − C−n
∆t

= 0. (37)

This clearly corresponds to a weak enforcement of the constraint (30), written as Ċ = 0
at the time step and jump midpoints. To avoid the drift phenomenon associated with the
enforcement of eqs. (37) it is preferable to enforce

C−n+1 = 0; C+
n = 0. (38)

Enforcing these constraints at each step implies eq. (37) which in turn implies the vanish-
ing of the work done by the discretized forces of constraint associated with the revolute joint.
A variety of kinematic constraints can be developed as outlined above, so that general multi-
body configurations can be modeled effectively. Since the work done by the discretized
forces of constraint vanishes, the energy decay inequality (11) which holds for the elastic
components of the multi-body system still holds for the entire constrained system, and the
unconditional stability of the time integration scheme follows for general multi-body systems.

6 Numerical Examples.

In this section numerical examples are presented to assess the advantages and drawbacks of
the proposed time integration scheme. Along with each example, numerical aspects of the
applied schemes are discussed and specific particularities are given concerning each one of
them.

6.1 Flexible Elbow Mechanism

The first example deals with the flexible elbow mechanism, depicted in figure 3. It consists
of two straight 0.72 m long aluminum beams of rectangular cross section (5 mm by 1 mm),
the first of which is initially along~i1 and supported at its root by a hinge as to allow rotation
about the ~i3 axis. The second beam hinges at its root on the tip of the first beam with a
revolute joint of which the axis is aligned with beam 1. Two masses of 500 g each are rigidly
connected at the tip of each of the two beams. The beam cross sections are oriented in such
a way that the smaller of the two bending stiffnesses is about the ~e3 axis, in both cases. The
modulus of elasticity, Poisson constant and density of aluminum are 73 GN/m2, 0.3 and
2 700 kg/m3 respectively.

The system is initially at rest. The loading of the system consist of a triangular pulse load
applied to the tip of beam 1, acting in the~i2 direction, a triangular pulse torque between the
two beams and a triangular pulse moment about the ~i3 axis applied to the root of beam 1.
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The direction of the torque between the two beams is such as to accelerate beam 2 about
the negative of its root ~e3 axis. The duration of all three pulses is 5.0 seconds, peaking at
2.5 seconds with a 0.05 N value for the tip load, a 0.01 Nm value for the torque between
the two beams and a −0.1 Nm value for the moment at the root of beam 1.

The system was modeled with 12 cubic beam elements, employing three point Gaussian
quadrature, for each beam, two revolute joint elements and two rigid masses, for a total of 446
degrees of freedom. The dynamic response of the system was computed with the generalized-
α method [11] (ρ∞=0.5), and the energy preserving and energy decaying schemes, for a period
of 20 seconds, using a total of 40 000 equal time steps. The energy preserving scheme failed
to converge at the 31 365-th time step, at 15.6825 seconds.

The motion and deformation of the two beams as calculated with the energy decaying
scheme are shown in figure 4. In this figure, the position of the two beams at 2 second intervals
are plotted on a three dimensional graph. The lines marked with o-symbols correspond to
the loci of the tips of the two beams. This graph clearly shows the extent to which elastic
deformation of the beams takes place while the first beam completes three quarters of a
revolution about the hinge at its root, and the second beam swings through large angles
around beam 1.

A comparison of the response time histories as calculated by the three methods is given
in figures 5 to 8. Figure 5 shows the tip displacement components of both beams in the ~i1
and ~i2 directions, while figure 6 shows the tip displacement components of both beams in
the ~i3 direction. With respect to these two graphs it is clear that the three methods are in
very good agreement. Figures 6 and 7 clearly show the effect of the elasticity of the system.
Without any elasticity the ~i3 direction displacement component of the tip of beam 1 would
have been zero (figure 6). Figure 7 shows the tip displacement component in the ~e2 direction
of beam 1, relative to the root of this beam and measured in the triad attached at this root.
This graph clearly shows the bending of beam 1 under the applied moment at its root and
the applied tip force, causing the tip to have a positive relative displacement of almost 0.5 m
at the peak of the applied loading, while at the same time the absolute displacement of the
tip is actually small but negative (see figure 5). This “elastic” displacement of 0.5 m is very
large considering the 0.72 m length of the beam. The three methods are once again in good
agreement, small differences being visible only with respect to the high frequency vibration
between t = 15 and t = 20 seconds. Also, these differences are primarily between the
energy decaying scheme and the generalized-α method, since the energy preserving scheme
run terminated at t=15.6825 seconds.

Figure 8 shows the same data that appears in figure 6, with respect to the tip displacement
of beam 1 in the~i3 direction. This harmonic transverse vibration of beam 1 is also very clearly
visible on the three dimensional deformation plot, figure 4. Fourier analysis was performed
on the three time histories generated by the three methods, from t=5.4 to t=15.6 seconds,
using 510 point discrete Fourier transforms on data sets containing every 40-th calculated
time step. The frequency resolution of this analysis is 0.09804 Hz. The resulting spectra
are shown in figure 9. Each spectrum is scaled in such a way that the vertical axis may
directly be interpreted as an amplitude axis. The three methods are in excellent agreement,
all three showing a 0.0213 m peak at 0.1961 Hz and a 0.0360 m peak at 0.4902 Hz. At
these frequencies one should not expect any significant numerical dissipation, since 2 Hz
corresponds to ∆t/T = 0.001. Small differences between the energy decaying scheme and
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the generalized-α method are visible after t = 17 seconds on the time history graph in figure 8
(this is past the point in time where the energy preserving scheme run terminated).

At the root of either beam, the axial force is the largest internal force component. The
time histories of the axial force at the Gauss point closest to the root of beam 1, as calculated
by the three methods, are shown in figure 10. The three methods are again in good agreement
with respect to low frequency oscillation (the first 14 seconds), whereas the results dominated
by high frequency oscillation (the last 6 seconds) obviously differ, due to the different levels
of numerical dissipation associated with the various methods. Quite high force levels are
observed near t=16 and t=18 seconds. The highest level of almost 10 N is reported by the
energy preserving scheme, just before its run terminated. It is clear that these high levels are
associated with very high frequencies. The levels calculated by the energy decaying scheme
is seen to be substantially lower than those of the generalized-α method.

A similar trend is observed with respect to the axial force at the Gauss point closest to
the root of beam 2, even though the levels are smaller by a factor of about 2 (figure 11).
A Fourier analysis was performed on this time history, and those of the transverse shear
forces in the ~e2 and ~e3 directions at the same Gauss point (figures 13, and 15, respectively),
between t=14.6585 and t=15.6825 seconds, using a 2048 point fast Fourier transform with
no windowing. The frequency resolution of this analysis is 0.9766 Hz. The resulting spectra
are shown in figures 12, 14 and 16, respectively. Once again each spectrum is scaled in such a
way that the vertical axis may directly be interpreted as an amplitude axis. The spectrum of
the axial force (figure 12) shows four prominent peaks, at 14.65, 27.34, 29.30 and 41.99 Hz.
The three methods are in very good agreement with respect to the placement of these peaks,
and the peak values are in reasonable agreement, if possible inaccuracies due to smearing are
taken into account. The effect of the numerical dissipation is very clearly seen above 200 Hz
(the frequency corresponding to ∆t/T = 0.1): the energy preserving scheme calculates a
markedly higher response than either the energy decaying or generalized-α methods. The two
transverse shear force spectra are much cleaner than that of the axial force, showing a number
of clearly defined peaks, the placement of which are once again predicted with good agreement
by the three methods, especially in the lower frequency range. Peaks are predicted at 6.836,
20.51, 45.90 Hz, in the case of the transverse shear force in the ~e2 direction, and 1.953,
15.63, 26.37, 51.76 and 60.55 Hz, in the case of the transverse shear force in the ~e3 direction.
In the latter case the energy decaying scheme did not predict any peak at 51.76 Hz. The
three methods are also in reasonable agreement with respect to the peak values in the lower
frequency range. At higher frequencies the peak placements tend to vary slightly between
the three methods, due to different period elongation characteristics, while the peak values
are drastically reduced for the generalized−α method and especially the energy decaying
scheme, due to high numerical dissipation and the relative long duration of free vibration
prior to the beginning of the Fourier analysis (at 150 Hz more than 2 000 oscillations are
completed between t=0 seconds and the beginning of the Fourier analysis).

6.2 Swing with Flexible Beam and Concentrated Mass

The second numerical example deals with the swing, shown in figure 17, which consists of
a beam and a midspan mass, with physical properties identical to those of either beams
or masses of the flexible elbow mechanism. Everywhere along the span of the beam S0 is
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aligned with S, and the beam cross section is oriented in such a way that the smaller of the
two bending stiffnesses is about the ~e2 axis. The mass is rigidly connected to the beam at its
midspan position, labeled C in the figure. The beam is suspended at each end by two rigid
links, and is initially at rest in the position as shown in the figure 17. The rigid links impose
a kinematic constraint corresponding to fixed distance between points O1 and A, and O2
and E of 0.36, and 0.36

√
2 m, respectively. The points labeled B and D indicate the quarter,

and three quarter span points of the beam, respectively. The loading of the system consist
of a triangular pulse in the ~i1 direction applied at the midspan mass. This pulse starts at
time t = 0, peaks at 2 N at t = 0.128 seconds and terminates at t = 0.256 seconds.

The system was modeled with four equal length cubic beam elements, employing three
point Gaussian quadrature, two rigid links and a rigid mass, for a total of 80 degrees of
freedom. The dynamic response of the system was calculated over a 1 second period using the
energy preserving and energy decaying schemes and the generalized-α method, (ρ∞ = 0.5),

in each case with 2000 equal time steps of ∆t = 0.5× 10-3 seconds.
Figure 18 shows the overall response of the system: the deflected beam configuration

predicted by the energy decaying scheme is shown at 0.1 second intervals. The solid lines
indicate the initial and final configurations, as well as the circular arc locus of point A. The
significant elastic deformation of the beam is evident in this figure.

The loci of various points on the beam are depicted in figure 19 where the initial and
final configurations of the beam are shown in dashed lines. As expected, points A and E
follow circular arcs, even though point E reverses its direction of motion some time during
the 1 second period. At t = 0.641 seconds, link O1-A and the beam line-up approximately
(at this point the beam is no longer perfectly straight). This event (labeled “event X”)
has considerable impact on the dynamic behavior of the system. The motion of point C
is quite smooth as a result of the high inertia attached at this point, except for an almost
instantaneous change in direction at event X. This contrasts with the motions of points B
and D which become highly vibratory after event X.

Figure 20 shows a comparison of the predicted time histories for the ~i1 and ~i3 direction
displacement components of point B, for the energy preserving and energy decaying schemes
and the generalized-α method. The three methods are in excellent agreement, small differ-
ences being barely visible only after event X.

Figure 21 shows the calculated time histories of the axial force at the Gauss point imme-
diately to the left of the midspan mass. The three methods are in close agreement until right
after the high peak caused by event X. The peak value is predicted to be 115.9, 114.5 and
112.7 N , for the energy preserving, energy decaying and generalized-α methods, respectively,
and is predicted by all three methods to occur at time t = 0.641 seconds. After this event the
energy preserving scheme results show much more pronounced high frequency oscillations
than the other two methods. Figure 22 shows the calculated time histories of the transverse
shear force in the ~e3 direction at the Gauss point immediately to the left of the midspan
mass. Once again the three methods are in good agreement up to event X, after which the
energy preserving scheme results show much more pronounced high frequency oscillations
than the other two methods. Similar trends are observed when other variables are plotted:
the displacement results of the two methods are in excellent agreement, while the velocities
and internal forces are in excellent agreement up to event X, after which high levels of high
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frequency oscillation is observed in the energy preserving scheme results.
The dynamic response calculation was repeated with the energy decaying scheme with

1 000 steps over the 1 second period. The normalized relative energy is calculated as
(E(t) − Er)/Er, where the reference energy level Er is the total energy in the system at
the termination of the applied loading pulse. The time history of the normalized relative
energy with 2 000 and 1 000 steps, is plotted in figure 23. The dramatic effect of event X
is very clearly visible in this graph: up to this event the energy remains virtually constant,
at event X a sudden drop in energy is observed, and after event X, due to the higher level
of vibration caused by this event, the energy continues to decay, though at a much slower
rate. A larger time step clearly causes larger decay in energy. Figure 24 shows the time
history of the increment in energy ∆E = En − En−2, in the case of the 2 000 step analysis,
and ∆E = En−En−1, in the case of the 1 000 step analysis, where the subscript n indicates
the n-th time step. The increment in energy was therefore calculated over the same time
increments of 0.001 seconds in both cases. As expected, the analysis with the larger time
step results in substantially higher, in absolute value, increments in energy. The energy
changes depicted in figure 24 give an objective, global measure of the error associated with
the time integration process that could be used to control the time step size.

7 Discussion and conclusions

In this paper, an unconditionally stable scheme was presented for the time integration of the
nonlinear elastic multi-body systems. The proposed scheme is of a finite difference nature,
though it mimics the scheme obtained by applying a time discontinuous Galerkin method to
a single degree of freedom linear oscillator. Discretized equations for the dynamic response
of elastic beams were used that imply an energy decay inequality. Discretized constraint
forces corresponding to kinematic constraints were derived and shown to perform no work
during the evolution of the system. The combination of the above features of the model
guarantees unconditional stability of the overall integration process for multi-body systems
as it implies an energy decay inequality for the total energy of the system.

Numerical experimentation shows the excellent behavior of the integration scheme as
compared to other available schemes. Results of the energy preserving and decaying schemes,
and the generalized-α method are found to be in good agreement. The generalized-α method
performs well for constrained multi-body systems and presents high frequency numerical
dissipation, but it is proven to be unconditionally stable only for linear system. On the
other hand, the energy preserving scheme is proven to be unconditionally stable for nonlinear
multi-body systems, but lacks high frequency numerical dissipation. As a result, this scheme
sometimes fails to converge in the presence of high frequency oscillations [7]. The energy
decaying scheme appears to be a good alternative combining a rigorous proof of unconditional
stability together with high frequency numerical dissipation.

The total energy loss at each time step could be used as a time step control parameter.
Indeed, the total energy loss is a measure of the global accuracy of the time integration
process. If this total energy loss is larger than a preset value, a smaller time step would be
used.
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Appendix A The Conformal rotation vector.

Let e0 and e be the Euler parameters representing a finite rotation [14]. Consider now the
following conformal transformation which defines c0 and the components of the conformal
rotation vector c:

c0 =
4e0

1 + e0

; c =
4e

1 + e0

; e0 =
c0

4− c0

; e =
c

4− c0

, (A1)

where the dependent parameter c0 = 2− (c2
1 + c2

2 + c2
3)/8.

The geometric interpretation of the conformal rotation vector is easily derived from its
definition as:

c = 4u tan
φ

4
, (A2)

where φ is the magnitude of the finite rotation and u the components of the unit vector
about which it takes place. The following matrix is defined:

G(c) =
1

4− c0

(
c0I + c̃ +

c · cT

4

)
. (A3)

It enjoys the following remarkable properties:

GGT = I ; Gc = c ; (A4)

G +
c̃T

4− c0

= GT − c̃T

4− c0

=

(
G + GT

2

)
(A5)

(
I +

c̃T

c0

)
G =

(
I − c̃T

c0

)
GT =

(
G + GT

2

)−1

(A6)

2c̃

4− c0

= G−GT . (A7)

The rotation matrix defined by c easily writes as:

R(c) =
1

(4− c0)2

(
c2
0I + 2c0c̃ + c̃c̃ + c · cT

)
= G(c)G(c) . (A8)

This last relationship shows that the conformal rotation vector can be conveniently used
to express the half rotation (through G(c) ), and the rotation (through R(c) ). All these
expressions are purely algebraic.

Appendix B Discretization of the finite

rotations.

Consider an initial time ti, a final time tf and a mid-point time th = (ti + tf )/2 and the
corresponding triads Si, Sf and Sh, respectively. The rotation matrices associated with those
triads are Ri, Rf , and Rh, respectively, all measured in S. R(c) is the rotation matrix from
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Si to Sf , measured in S. The mid-point triad Sh is defined so that the rotation from Si

to Sh and Sh to Sf are equal. Let G be that rotation, measured in S. Let G∗ and R∗ be
the corresponding rotation matrices measured in Sh. The following relationships are readily
derived:

G = RhR
T
i ; G∗ = RT

0 RT
i RhR0 ;

G = RfR
T
h ; G∗ = RT

0 RT
h RfR0 ; (B1)

R = RfR
T
i ; R∗ = RT

0 RT
h RfR0R

T
o RT

i RhR0 ;

and:

RfR0 = RhR0G
∗ = RiR0R

∗ ;

RhRo = RiRoG
∗ = RfRoG

∗T ; (B2)

RiRo = RhRoG
∗T = RfRoR

∗T .

Finally, the following notations are introduced:

Ri =

[
RiR0 0

0 RiR0

]
; Rf =

[
RfR0 0

0 RfR0

]
. (B3)

Appendix C Discretization of the forces of constraint

in a revolute joint.

Consider the following discretization of the forces of constraint (32) corresponding to the
constraint C1:

fk

1
= sλ1

(
G̃k

hi3

)
Hl

hi1; f l

1
= sλ1

(
G̃l

hi1

)
Hk

hi3. (C1)

where

Gk
h =

2Rk
hR0

4− ak
0

; Hk
h =

Rk
fR0 + Rk

i R0

2
(C2)

The work done by these forces of constraint ∆W
(1)
const over a time step is:

∆W
(1)
const

∆t
=

akT

∆t
fk

1
+

alT

∆t
f l

1
. (C3)

Introducing eq. (C1), and using eqs. (A7), and (B1) yields:

∆W
(1)
const

∆t
=

sλ1

∆t

[
iT1 RT

0 RlT
h

(
GlT Gk −GlGkT

)
Rk

hR0i3
]
. (C4)

With the help of eq. (B1), this finally becomes:

∆W
(1)
const

∆t
= sλ1

C1f − C1i

∆t
. (C5)
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Consider now the following discretization of the forces of constraint (31) corresponding
to the constraint C3:

fk

3
= sλ3

(
G̃k

hi1

)
Hl

hvφ; f l

3
= sλ3

(
G̃l

hvφ

)
Hk

hi1;

fφ
3 = sλ3 (εh1 cos φh − εh2 sin φh) , (C6)

where

φh =
φf + φi

2
; εhn =

elT
nfe

k
1f + elT

nie
k
1i

2
;

and

vφ =
sin φf + sin φi

2
i1 +

cos φf + cos φi

2
i2

The work done by these forces of constraint ∆W
(3)
const over a time step is:

∆W
(3)
const

∆t
=

akT

∆t
fk

3
+

alT

∆t
f l

3
+ 2 sin

φf − φi

2
fφ

3 . (C7)

Introducing eq. (C6), and using eqs. (A7) and (B1) yields:

∆W
(3)
const

∆t
=

sλ3

∆t

[
vT

φRT
0 RlT

h

(
GlT Gk −GlGkT

)
Rk

hR0i1

+ εh1 (sin φf − sin φi)− εh2 (cos φi − cos φf )] . (C8)

With the help of eq. (B1), this finally becomes:

∆W
(3)
const

∆t
= sλ3

C3f − C3i

∆t
. (C9)
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Figure 12: Flexible elbow: spectrum of axial force at root of beam 2
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Figure 13: Flexible elbow: time history of transverse shear force in ~e2 direction at root of
beam 2
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Figure 14: Flexible elbow: spectrum of transverse shear force in ~e2 direction at root of
beam 2
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Figure 15: Flexible elbow: time history of transverse shear force in ~e3 direction at root of
beam 2
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Figure 16: Flexible elbow: spectrum of transverse shear force in ~e3 direction at root of
beam 2
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Figure 17: Swing comprising two rigid links and a beam with midspan mass
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A
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Figure 19: Swing: loci of five nodes on the beam
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Figure 21: Swing: time history of axial force in the beam, at the Gauss point immediately
to the left of the midspan mass
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Figure 22: Swing: time history of transverse shear force in the beam in the ~e3 direction, at
the Gauss point immediately to the left of the midspan mass
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Figure 23: Swing: Time history of normalized relative energy, (E(t)− Er)/Er
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