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Abstract

Linearized stability analysis methodologies that are applicable to large scale, multi-
physics problems are presented in this paper. Two classes of closely related algo-
rithms based on a partial Floquet and on an autoregressive approach, respectively,
are presented in common framework that underlines their similarity and their rela-
tionship to other methods. The robustness of the proposed approach is improved by
using optimized signals that are derived from the proper orthogonal modes of the
system. Finally, a signal synthesis procedure based on the identified frequencies and
damping rates is shown to be an important tool for assessing the accuracy of the
identified parameters; furthermore, it provides a means of resolving the frequency
indeterminacy associated with the eigenvalues of the transition matrix for periodic
systems. The proposed approaches are computationally inexpensive and consist of
purely post processing steps that can be used with any multi-physics computational
tool or with experimental data. Unlike classical stability analysis methodologies, it
does not required the linearization of the equations of motion of the system.

Key words: Multibody systems, Stability analysis, Partial Floquet method,
Autoregressive method

1 Introduction

An important aspect of the dynamic response of flexible multi-body systems is the potential
presence of instabilities. The instability of a cantilevered beam subjected to a tip, com-
pressive follower force [1], or the instabilities appearing in rotor 1 dynamics [2,3] are but
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two well-known types instabilities that can occur in dynamical systems and flexible multi-
body systems. If the equations of motion of the system can be cast in the form of linear,
ordinary differential equations with constant coefficients, classical stability analysis method-
ologies based on the characteristic exponents of the system can be used. On the other hand,
when the equations of motion of the system are cast in the form of linear, ordinary differ-
ential equations with periodic coefficients, Floquet’s theory [4,5] is used. Stability analysis
is typically performed on simplified models with the smallest number of degrees of freedom
required to capture the physical phenomenon that causes the instability. As the number of
degrees of freedom used to represent the system increases, these methods become increasingly
cumbersome, and quickly unmanageable.

Due to increased available computer power, the analysis of flexible multibody systems relies
on increasingly complex, large scale models. Full finite element analysis codes are now rou-
tinely used for this purpose [6,7,8] and, more often than not, multibody models are coupled
to other codes to capture multi-physics phenomena. For instance, the analysis of the ride
quality of a road vehicle might require the coupling of a multibody representation of the sus-
pension system to an engine model. For aeroelastic problems, the structural dynamics model
of the flight vehicle must be coupled to fluid dynamics code that predicts the aerodynamic
forces acting on the structure.

Bauchau and Wang [9], have reviewed several approaches to stability analysis and their ap-
plicability to large scale multibody system. They point out that the only approach that gives
information about nonlinear stability is Lyapunov’s function method, which can clearly not
be applied to large dimensional numerical models. Hence, the problem of linearized stability
is addressed in this paper, i.e the stability of small perturbations about a nonlinear equilib-
rium configuration that could be periodic. For large multibody models, a formal linearization
is difficult and costly to obtain for constant in time systems, and virtually impossible in the
case of periodic systems. This is particularly true when multi-physics models are coupled
to multibody simulations. Hence, the only option is to study the response of the system
to small perturbations about an equilibrium configuration using a fully nonlinear, coupled
simulation tool. This means, in effect, that the complex dynamic model is used as a virtual
prototype of the actual dynamical system, and the analyst is running a set of “experiments”
to determine the stability characteristics of the system. A similar approach was taken by
other researchers [10,11,12,13] for systems modeled by simple analytical models featuring a
few degrees of freedom.

In this framework, the actual sensors that experimentally measure the response of a physical
system are replaced by “sensors” that extract from the numerical model the predicted re-
sponse of the system. In an experimental setting, the number of available sensors is typically
limited because the complexity and cost of the experiment will dramatically increase with
the number of sensor. Hence, the location and nature of the sensors will be carefully selected
so as to obtain high quality measurements that are most relevant to the phenomenon un-
der scrutiny. On the other hand, in a numerical setting, the very nature of computational
simulations implies that the response of each degree of freedom is available at no additional
cost. The analyst could select a small number of these signals to perform stability analysis,
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mimicking the process used in an experimental setting, but it is also possible to use all the
available data in an effort to obtain more accurate predictions.

In an experimental setting, stability analysis methods must be robust enough to deal with
experimental noise. Numerical implementation also involves noise associated with the time
discretization and inaccuracies of the solution. Another source of noise is the fact that the
computed response is not that of a linear system, but rather that of a nonlinear system
acted upon by small perturbations. In practice, this is a major hurdle: if the perturbation is
too large, the nonlinearity in the response is pronounced and linearized stability tools give
erroneous stability characteristics; on the other hand, if the perturbation is too small, the
response has a small amplitude that becomes indistinguishable from the numerical noise,
leading once again to erroneous predictions. If all the predictions produced by the numer-
ical simulation are used for stability analysis, the data set will be highly redundant: the
important information is a small subset of the large, noisy, highly redundant data set. This
discussion clearly indicates that noise is as much a problem for numerical methods as it is
for experimental methods.

In this paper, two algorithms are presented for stability analysis based on techniques that are
widely used in system identification, model reduction, linear control, and signal processing.
In broad terms, these methods [14] are based on two techniques: the singular value decompo-
sition and polynomial or moment matching concepts. The first type of algorithms are directly
derived from linear time-invariant state space models. The relationship between the impulse
response of the system at two consecutive time steps leads to the classical Ho and Kalman’s
algorithm [15]; subsequently, this approach was modified to yield the eigensystem realization
algorithm [16] that involves the singular value decomposition. A variant of these approaches,
first derived by Moore [17], is known as the balanced truncation method, and additional
modifications of the approach are found in ref. [18]. The polynomial based methods are gen-
erated from autoregressive moving average models [19], an approach which is equivalent to
that used for linear, time-invariant state space models. When impulse responses are solely
considered, the autoregressive moving average model reduces to the autoregressive formula-
tion. Bauchau and Wang [9] have proved that Prony’s method is, in effect, an autoregressive
method, although it is often presented as a curve fitting procedure.

To eliminate the effect of noise in the measured signals, numerous modifications of autore-
gressive methods has been developed [20,21]. A widely used approach to noise filtering is
based on the singular values truncation technique. It has been proved that singular value
decomposition associated with Hankel-norm model reduction [22], is equivalent to finite
impulse response filtering [23]. The proper orthogonal decomposition [24], often performed
via singular value decomposition, is also an efficient noise filtering technique that has been
widely applied to fluid problems [25]; it also forms the basis for model reduction techniques
in solid mechanics [26] and nonlinear control [27]. The physical interpretation of the proper
orthogonal modes is discussed in refs. [28,29]

The two algorithms presented in this paper are closely related to the above two classes of
methods and since stability is the focus of the present work, they will be introduced through
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Floquet’s theory for the first and autoregressive concepts for the second. Since the singular
value decomposition is such a powerful tool to deal with noise, both approaches make use of
this technique. The proposed algorithms can be applied to one or multiple time signals, and
are able to deal with time constant or periodic systems. The algorithms are equally applicable
to experimental measurements or numerically computed responses. If all signals are used, i.e.
if the time histories of all the degrees of freedom of the system are used, the computational
burden associated with these algorithms becomes large. One option is to retain a few signals
only to reduce the computational cost, but at the expense of loosing potentially relevant
information contained in the discarded signals. In this paper, a different approach is taken.
First, the proper orthogonal decomposition technique is applied to the full set of all degrees
of freedom. The few proper orthogonal modes associated with the largest amount of energy
contained in the responses of all degrees of freedom are retained and used as an input to
the stability analysis algorithms. This approach is computationally efficient, while retaining
accuracy and requiring minimum user input.

2 Model of the system

The systems to be investigated here are assumed to be linear models featuring constant or
periodic coefficients. In first order form, the governing equations are written as

u̇(t) = Au(t) + f(t), (1)

where u(t) is the state vector of dimension 2N , A the system characteristic matrix, and f(t)
is related to the externally applied forces; the notation ()· indicates a derivative with respect
to time. Eq. (1) could represent the first order form of the equations of motion of a multibody
system, in which case the state vector would store the displacements and velocities of all
degrees of freedom of the model. For multi-physics models, the state vector would include
additional information; for instance, fluid pressures and velocities in the case of an aeroelastic
simulation. It is well known that the stability characteristics of the system properties are
determined by the characteristic matrix of the system; hence, in the present work, the sole
homogeneous problem is considered

u̇(t) = Au(t). (2)

At first, consider a system featuring constant coefficients, i.e. A is a constant matrix. Given
initial conditions, u = u0 at time t0, the solution of the system is given in textbooks [4] as

u(t) = eA(t−t0)u0. (3)

In numerical applications, the response of the system will typically be computed at a set of
discrete times tk = k∆t, where ∆t is the time step and k a positive integer. Without loss
of generality, the initial time can be assumed to be zero, i.e., t0 = 0. The discrete solution
at time tk now writes u(tk) = uk = exp(Ak∆t) u0, and at time step k + 1, it is clear that

4



uk+1 = exp(A∆t) uk. The discrete time model can now be written in a compact form as

uk+1 = Asuk, As = exp(A∆t). (4)

Next, consider a system with periodic coefficients, i.e. matrix A is a periodic function of
time, A(t) = A(t+ T ), where T is the period of the system. Here again, the solution of the
problem is found in textbooks [4], and given a set of initial conditions, the solution becomes

u(t) = P (t)eΛ(t−t0)P−1(t0)u0; (5)

where Λ = diag(λi) is a diagonal matrix of characteristic exponents of the periodic system
and P (t) a periodic matrix, P (t) = P (t + T ). The discrete solution now becomes uk =
Pk exp(Λk∆t)P−1

0 u0. Finally, the discrete time model is recast in a compact form as

uk+1 = Akuk, Ak = Pk+1e
Λ∆tP−1

k . (6)

Because the system is periodic, it follows that Ak = Ak+p, where p is the number of time
steps per period, p = T/∆t, assumed to be an integer.

3 Method of stability analysis

The proposed approaches for stability analysis will be presented for periodic systems only
because constant coefficient systems are a particular case of periodic systems featuring an
arbitrary period.

3.1 Floquet’s Theory

Floquet’s theory assesses the stability characteristics of general dynamic systems described
by eq. (2) with periodic coefficients. Floquet’s theory [4,5] involves the transition matrix,
Φ(t), that relates the states of the system at time t and t + T , u(t + T ) = Φ(t)u(t). When
t = k∆t, this discrete relationship becomes

uk+p = Φkuk. (7)

The relationship between matrices Φk and Ak is found from the discrete time model, eq. (6),
as Φk = Ak+p−1Ak+p−2 . . . Ak. An explicit expression for Φk is

Φk = Pke
ΛTP−1

k ; (8)

The eigenvalues of the transition matrix are exp(λiT ), i = 1, 2, . . . , 2N , and assumed to be
distinct in this discussion. A complete discussion of the general case of repeated eigenvalues
is found in ref. [4]. The stability criterion can now be stated as: the periodic system is stable if
and only if the norm of all eigenvalues is smaller than unity: | exp(λiT )| < 1, i = 1, 2, . . . , 2N .
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In practice, the transition matrix is constructed by a full set of linearly independent solutions
u(i)
p , i = 1, 2, . . . , 2N , when initial conditions are given by the identity matrix,

Φ0 =
[
u(1)
p , u(2)

p , . . . , u(2N)
p

]
. (9)

This discussion clearly shows the difficulties associated with the application of Floquet’s
theory for stability assessment. In numerical applications, the evaluation of the transition
matrix becomes an overwhelming task as it requires the integration of the system of equations
for an entire period, for each degree of freedom of the system. As the number of degrees of
freedom of the system increases, this computational effort becomes prohibitive. Furthermore,
for larger systems, the transition matrix becomes increasingly ill conditioned.

The last step of Floquet’s theory involves the determination of the characteristic exponents
of the system from the eigenvalues of the transition matrix. A typical eigenvalue is written as

ri exp(±iϕi), where i =
√
−1, and a characteristic exponent as λi = ωi[ζi ± i

√
1− ζ2i ], where

ωi and ζi are the frequency and damping, respectively, associated with this characteristic
exponent; it then follows that

ζi =

√√√√ c2i
1 + c2i

; ωi =
ciϕi

ζiT
, i = 0, 1, 2, . . . , N − 1, (10)

where ci = (ln ri)/ϕi.

3.2 The partial Floquet approach

In view of the high computational cost associated with the application of Floquet’s theory,
it is desirable to construct an approximation of the transition matrix. In partial Floquet
theory [30,31], information about the dynamics of the system is extracted from the response
of a small number of degrees of freedom. According to eq. (5), the response of a single degree
of freedom of the system can be written as h(t) = L(t) exp(Λt)P−1(0)u0, where array L(t)
represents a single line of matrix P (t), and hence, L(t) = L(t + T ); h(t) can be viewed as
a “sensor” output such as the time history generated by a strain gauge or accelerometer
attached to the system. In view of eq. (5), the discretized signal at time t = k∆t + ℓT ,
denoted hk,ℓ = h(k∆t+ ℓT ), now becomes

hk,ℓ = Lke
Λ(k∆t+ℓT )P−1

0 u0, (11)

where Lk = L(k∆t + ℓT ) = L(k∆t); the last equality follows from the periodic nature
of L(t). m consecutive data points starting in the ℓth period are stored in array hT

ℓ =
⌊h1,ℓ h2,ℓ . . . hm,ℓ⌋; if m < p, this array stores fewer than the total number of data
points in a period, whereas if m > p, it stores more than the total number of data points in
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a period. Matrix R is now defined

R =



L1e
Λ∆t

L2e
Λ2∆t

...

Lme
Λm∆t


. (12)

With the help of this notation, it is clear that hℓ = R exp(ΛℓT )P−1
0 u0. The relationship

between arrays hℓ+1 and hℓ is now written in terms of the transition matrix, Q, as

hℓ+1 = Qhℓ, Q = ReΛTR+, (13)

where R+ is the Moore-Penrose inverse [32] of R; the superscript ()+ will be used here to
denote Moore-Penrose inverses.

The following two matrices are now defined

H0(m×n) = [h0 h1 . . . hn−1] , and H1(m×n) = [h1 h2 . . . hn] . (14)

Since eq. (13) holds for each column of these matrices, it follows that

H1 = QH0. (15)

This relationship does not allow the exact computation of the transition matrix, Φ, defined
by eq. (7). Indeed, complete knowledge of this matrix requires the responses of all degrees
of freedom to 2N linearly independent initial conditions, as expressed by eq. (9); if this
information were available, matrices H0 and H1 of size 2N × 2N could be constructed and
Φ = H1H

−1
0 would yield the transition matrix. In view of the limited information available, an

approximation to the transition matrix is evaluated as Q = H1H
+
0 , where the Moore-Penrose

inverse [32] of H0 is evaluated using the singular value decomposition as H+
0 = VrΣ

−1
r UT

r ,
see Appendix A, where r is the estimated rank of H0. The estimated transition matrix
becomes

Q(m×m) = H1VrΣ
−1
r UT

r . (16)

In view of its definition in eq. (14), matrix H0 will store highly redundant data and it is
not unexpected that, more often than not, r < m. It follows that of the m eigenvalues of Q
in eq. (16), r only are expected to be physically meaningful, whereas the remaining m − r
eigenvalues are related to noise in the data. Consequently, it makes sense to project matrix
Q in the subspace defined by the r proper orthogonal modes of H0, stored in Ur, to find

Q̂(r×r) = UT
r QUr = UT

r H1V
T
r Σ−1

r . (17)

The stability characteristics of the system are then extracted from the eigenvalues of the
approximate transition matrices, Q or Q̂, using eq. (10).
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The method presented thus far is based on the information extracted from a single signal,
see eq. (11). In practice, if Ns signals are available, the following matrices are constructed

H0 =



H
(1)
0

H
(2)
0

...

H
(Ns)
0


, H1 =



H
(1)
1

H
(2)
1

...

H
(Ns)
1


; (18)

where matrices H
(k)
0 and H

(k)
1 are constructed with the data of the kth signal, as defined in

eq. (14). The analysis then proceeds as before, with matrices H0 and H1 replacing matrices
H0 and H1, respectively. If the responses of all degrees of freedom of the system are used
for stability assessment, Hankel matrices H0 and H1 become equivalent to the snapshot
matrices and the present partial Floquet theory becomes equivalent to the Poincaré mapping
technique [10,12,13].

3.3 The autoregressive approach

The autoregressive method will be presented here as a modification of the partial Floquet
approach: by analogy to eq. (15), matrix B is defined as

H1 = H0B. (19)

Clearly, matrix B and the transition matrix are closely related since B = H+
0 QH0. As was

the case for the partial Floquet method, too little information is contained in matrices H0

and H1 to afford an exact evaluation of B. Hence, the Moore-Penrose inverse of matrix H0

is used here again to evaluate an approximation as B = H+
0 H1, and finally,

B(n×n) = VrΣ
−1
r UT

r H1; (20)

In view of highly redundant nature of the data stored in matrix H0, it should be expected
that, in general, r < n, and hence, only r eigenvalues of B should be physically meaningful.
Consequently, it makes sense to project matrix B in the subspace defined by Vr, to find

B̂(r×r) = V T
r BVr = Σ−1

r UT
r H1Vr. (21)

The stability characteristics of the system are then extracted from the eigenvalues of the
approximate transition matrices, B or B̂, using eq. (10). Bauchau and Wang [9] have shown
that the complex exponential [33] or Prony’s method is, in fact, an autoregressive method.
Autoregressive methods are often combined with moving average techniques to yield the
ARMA algorithm [34]. However, when dealing with stability problems, the excitation of the
system often comes in the form of an initial impulse. The moving average component of
the ARMA algorithm then automatically vanishes, simplifying to the present autoregressive
approach.
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The stability analysis algorithms presented in this section produce estimates of r character-
istic exponents of the system. The analyst is now faced with the following dilemma: how
reliable are these estimates? Poor estimates are due to two broad categories of errors. First,
if the excitation of the system is chosen inappropriately, some relevant modes might not be
excited, and no matter what signals are used for stability analysis, the dynamics associated
with such modes cannot possibly be extracted by any algorithm. Exact evaluation of the
characteristic exponents requires the response of all modes to 2N linearly independent ini-
tial conditions, i.e. all modes must be excited to obtain the exact solution. Second, assuming
that all relevant modes have sufficient excitation, the noise in the data or a poor choice of
signals might lead to inaccurate estimates of system dynamics. Error from the first source
cannot be remedied by better algorithms, rather, a better judgement is required of the an-
alyst. Note that this problem is also present when running an experiment: the excitation
device must be properly designed to provide enough energy to all relevant modes.

Errors from the second source can be alleviated by better algorithms; two complementary
approaches are presented here. The first approach eliminates the need to select specific signals
as input to the stability analysis by using all the available data, i.e. the responses of all
degrees of freedom of the system. While this approach certainly eliminates the guesswork,
it will require the singular value decomposition of very large matrices, resulting in large
computational costs. The proper orthogonal decomposition method is proposed as a solution
of this problem, as discussed in section 4. The second approach relies on the reconstruction
or synthesis of the signals associated with the estimates of r characteristic exponents of
the system. If the reconstructed signals are in close agreement with the original signals, it
is likely that the identified characteristic exponents are reliable estimates. This method is
presented in section 5. The combination of these two approaches is expected to yield more
reliable estimates of stability characteristics, and warn the analyst when poor predictions
are obtained.

4 Use of proper orthogonal modes

When applying the stability algorithms described in section 3 to numerical systems, the
responses of all degrees of freedom of the system are available as a result of the computation.
This contrasts with experimental applications where only a small number of signals are
available. To extract the most accurate predictions, it is logical to use all available data, i.e.
in eq. (18), the number of signals equals the number of degrees of freedom of the system,
Ns = 2N . Clearly, in view of its size, the singular value decomposition of matrix H0(2Nm×n)

will be very expensive.

To bypass this high cost, a preprocessing step, based on the proper orthogonal decomposition,
is used to condense the available data. This technique provides a unique decomposition of
system response in terms of a set of orthogonal modes associated with decreasing energy
content. The few proper orthogonal modes with the highest energy content are then selected
to be “generalized” or “optimized sensors” to drive the stability analysis. To implement this
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approach, the following matrix is assembled from the time histories of all degrees of freedom

T0 = [u0 u1 . . . un] , (22)

where array uk stores all the degrees of freedom of the system at time tk. Here again, the
singular value decomposition is used to compute the proper orthogonal modes of T0 as
T0 = UrΣrV

T
r , where Ur stores the proper orthogonal modes, and r is the estimated rank of

T0. The system response is then projected onto the space of the proper orthogonal modes to
find the r signals, UT

r T0 = ΣrV
T
r , or

h
i
= σivi, i = 1, 2, . . . , r, (23)

where vi is the i
th column of Vr. The r signals, hi, are generalized, or optimized signals: while

they are not the response of any specific degree of freedom of the system, they form a set of
r orthogonal signals containing most of the energy of the system, as measured by the index
defined in eq. (A3).

The singular value decomposition of matrix T0 of size 2N × n is an expensive operation,
the cost of which is estimated to be O(4N2n + n3), see references [35,36]. However, in the
present application, it is not necessary to extract all the singular values of T0, rather, only
the r dominant singular values are required. Several algorithms have been proposed for this
task [37,38], but one of the most effective tool is the Lanczos algorithm [32] that operates
on the following real symmetric matrix

T =

 0 T0

T T
0 0

 . (24)

It produces the r dominant singular values and the matrices Ur and Vr at a reasonable
computational cost.

5 Signal synthesis

Because of noise in the data or the possibility of a poor choice of signals, the algorithms
described above can lead to inaccurate estimates of system dynamics. To detect eventual
problems, it is important to reconstruct or synthesize the signals associated with the r esti-
mated characteristic exponents of the system. Let hk and ĥk be the original and reconstructed
signals, respectively; the discrepancy between the two is quantified by the following index

ϵ =

√√√√ 1

n

n∑
k=1

(ĥk − hk)2. (25)

If the reconstructed signals are in close agreement with the original signals, i.e. if ϵ is small,
it is likely that the identified characteristic exponents are reliable estimates.
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The response of a degree of freedom of the system, h(t), can be expressed in terms of
the characteristic exponents as h(t) =

∑2N
j=1 ℓj(t) exp(λjt)cj, where ℓj(t) and cj are the jth

elements of arrays L(t) and c = P−1
0 u0, respectively. This expression is further simplified by

defining aj(t) = ℓj(t)cj, to find h(t) =
∑2N

j=1 aj(t) exp(λjt). Note that for the actual signal,
the summation extents over all 2N characteristic exponents of the system; on the other hand,
the estimated signal is ĥ(t) =

∑r
j=1 âj(t) exp(λ̂jt), where the summation extends over the r

estimated characteristic exponents, λ̂j. Among the r estimated exponents, a null exponent
often occurs, corresponding to an offset of the signal, nr real exponents might appear, and
finally, 2nc complex conjugate exponents are also likely to occur. When the characteristic
exponents are written as exp(λ̂j∆t) = rj exp(iϕj) and the coefficients of the expansion as
âj(t) = αj(t) + iβj(t), the estimated signal becomes

ĥ(t) = α0(t) +
nr∑
j=1

αj(t)r
t/∆t
j +

nr+nc∑
j=nr+1

[
2αj(t)r

t/∆t
j cos(

ϕjt

∆t
)− 2βj(t)r

t/∆t
j sin(

ϕjt

∆t
)

]
. (26)

At time t = k∆t, the discrete value of the estimated signal is

ĥk = α0,k +
nr∑
j=1

αj,kr
k
j +

nr+nc∑
j=nr+1

[
2αj,kr

k
j cos(kϕj)− 2βj,kr

k
j sin(kϕj)

]
= qT

k
ak, (27)

where the subscript k indicates a quantity computed at time tk, and the two arrays ak and
q
k
were defined as

ak =



α0,k

α1,k

...

αnr,k

αnr+1,k

βnr+1,k

...

αnr+nc,k

βnr+nc,k



, and q
k
=



1

rk1
...

rknr

2rknr+1 cos(kϕnr+1)

−2rknr+1 sin(kϕnr+1)
...

2rknr+nc
cos(kϕnr+nc)

−2rknr+nc
sin(kϕnr+nc)



, (28)

respectively, and αj,k = αj(k∆t). Array q
k
stores known quantities related to the estimated

exponents and ak the unknown coefficients of the expansion of the estimated signal. Flo-
quet’s theory implies that aj(t) is a periodic function and hence, ak = ak+p. The unknown
coefficients of the expansion are now computed by matching the actual and estimated signals
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at discrete time steps tk+ℓp, hk+ℓp = ĥk+ℓp, ℓ = 0, 1, . . . ,m, to find

hk

hk+p

...

hk+mp


=



qT
k

qT
k+p
...

qT
k+mp


ak = Qk ak. (29)

This set of linear equations is solved using the least square method, such that

ak = (QT
kQk)

−1Qk



hk

hk+p

...

hk+mp


. (30)

Solving this linear system for k = 0, 1, 2, . . . p − 1, will yield discrete values of the periodic
coefficients of the expansion, aj(t), over one period. Of course, for constant coefficient sys-
tems, the procedure simplifies considerably, since the coefficients of the expansion become
constants. Once the coefficients of the expansion are evaluated, the estimated signal, ĥ, fol-
lows from eq. (27) and the quality of the estimation can be assessed with the help of eq. (25).
The evaluation of the estimated signal is particularly important for periodic systems: if the
sole information available is the characteristic exponent, an indeterminacy remains concern-
ing the corresponding system frequency. Indeed, the contribution of the exponent to system
response is of the form aj(t) exp(λj), where aj(t) is a periodic function. Expanding aj in
Fourier series yields aj(t) =

∑
k gjk exp(ikΩt), where Ω = 2π/T , and hence, the frequency of

the system becomes ωj

√
1− ζ2j + kΩ, where k is an undetermined integer. If the estimated

signal is evaluated, aj(t) is known in discrete form and so are its Fourier coefficients, gjk.
The non vanishing coefficients gjk determine the integers k.

6 Stability analysis procedure

The algorithms described in the last two sections are combined to provide a robust approach
to the stability analysis of complex systems. The overall procedure involves the following
steps.

(1) Determine the dynamic response of the system to a given excitation.
(2) Construct matrices T0 and T defined in eq. (22) and eq. (24), respectively.
(3) Evaluate rT proper orthogonal modes from matrix T using Lanczos algorithm.
(4) Compute the rT optimal signals defined by eq. (23).
(5) From these signals, assemble matrices H0 and H1 defined by eq.(14).
(6) Perform the singular value decomposition of H0.
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(7) Evaluate matrix Q̂ or B̂ using eq. (17) or (21), and compute its eigenvalues.
(8) Compute the associated system frequencies and damping using eq. (10).
(9) Compute the coefficients of the expansion, ak, using eq.(30)
(10) Evaluate the estimated signal, ĥk, using eq.(27).

The above procedure calls for the following remarks.

(1) The procedure presented above is equally applicable for constant coefficient and periodic
systems. In the former case, many of the steps of the procedure considerably simplify.

(2) The first step of the procedure is critical as it involves the selection of a suitable exci-
tation. The excitation should provide an adequate amount of energy for the modes of
interest, typically, the least damped modes of the system. Clearly, this step requires the
understanding of the dynamic behavior of the system.

(3) Steps 2, 3 and 4 can be bypassed and replaced by a choice of suitable signals, typically
the response of specific degrees of freedom of the system. The computation of the
proper orthogonal decomposition and associated optimal signals relieves the analyst
from having to select suitable signals, leading to a more robust procedure.

(4) Step 3 and 7 involves the estimations of the rank of matrices T and H0, respectively;
these are crucial steps of the procedure. The energy index, eq. (A3), is conveniently used
for this estimation by requiring ErT > 1 − ϵ and ErH0

> 1 − ϵ, where ϵ is a small, user
defined number. It is sometimes convenient to let rT and rH0 be user specified inputs.

7 Numerical examples

Three examples will be treated in this section, illustrating the various methods described in
this paper.

7.1 Parametric excitation of a beam

The first example deals with a uniform, simply supported beam of length ℓ = 1 m subjected
to an end compressive load of harmonically varying amplitude, P = P0 + P1 cos(ωpt). The
physical properties of the beam are: bending stiffness, EI = 6.57 kN·m2 and mass per unit
span, m = 3.24 kg/m.

The governing equation of the problem is readily derived with the help of the Euler-Bernoulli
assumptions to find

EI
∂4w

∂x4
+ (P0 + P1 cosωpt)

∂2w

∂x2
+ c

∂w

∂t
+m

∂2w

∂t2
= 0, (31)

where w is the transverse displacement of the beam and c the damping coefficient. Ana-
lytical solutions of the problem are obtained with the variable separation method [1]. The
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transverse displacement of the beam is expanded as w(x, t) = qk(t) sin kπx/ℓ, k = 1, 2, . . . , n.
Substituting this assumed solution into the governing equation then yields

q̈k + ϵq̇k + Ω2
k(1−

P0 + P1 cosωpt

Pk

)qk = 0 (32)

where Ωk = (kπ/ℓ)2
√
EI/m is the kth natural frequency of the beam, Pk = (kπ/ℓ)2EI

Euler’s kth buckling load, and ϵ = c/m. For convenience, eq. (32) is rewritten as q̈k +

ϵq̇k + ω2
k(1 − 2µk cosωpt)qk = 0, where ωk = Ωk

√
1− P0/Pk and µk = 1/2 P1/(Pk − P0).

Finally, this equation is brought in the form of the well-known Mathieu equation [5] by
non dimensionalizing all terms to find d2qk/dτ

2 + ϵ̂dqk/dτ + (a − 2q cos 2τ)qk = 0, where
τ = ωpt/2, ϵ̂ = 2ϵ/ωp, a = (2ωk/ωp)

2 and q = aµ/2. The harmonic balance method provides a
classical solution of this equation and the stability boundaries for the problem are computed
via Hill’s infinite determinant approach. Fig. 1 shows Strutt’s diagram that depicts the
stability boundaries in the space of the excitation frequency, ω = ωp/(2ωk), versus excitation
parameter, µ = µk, in the absence of damping.

The stability analysis method proposed in this paper will be validated by comparing predicted
stability boundaries with those obtained via Hill’s infinite determinant method and predicted
frequencies and damping with those extracted from a direct application of Floquet’s classical
theory. The beam was modeled with 4 cubic finite elements [39]; the numerical simulation
was run for a total of 12 periods, T = 2π/ωp, with a time step ∆t = 1.0 msec. For the stability
analysis, the sampling period was set to T/96, 3 proper orthogonal modes containing over
95% of the system’s energy were used as optimized signals, and the characteristics of the
system were estimated using matrix Q̂, see eq. (17). Fig. 1 shows that excellent correlation
is found between the predictions of Hill’s determinant and of the proposed approach. For a
more quantitative comparison of the predictions, Fig. 2 shows the frequency and damping
associated with the characteristic exponent of largest magnitude as a function of excitation
frequency, for an excitation parameter µ = 0.15. Finally, the last part of the figure compares
the norms of the maximum eigenvalue of the transition matrix. Excellent agreement is found
for all results.

Next, the effect of damping on stability boundaries was investigated. Damping was modeled
by adding to the simulation viscous forces proportional to the strain rates, F d = µsKsė,
where µs is the damping coefficient, e the strain array, and Ks the beam cross-sectional
stiffness matrix. These quantities are all measured in a cross-section attached coordinate
system. Fig. 3 shows the stability boundaries in the presence of damping, as predicted by
Hill’s infinite determinant and by the present method. The damping coefficient was selected
as µs = 0.2 msec, which corresponds to ϵ = 12.57 sec−1. Fig. 4 shows the frequency, damping
and norm associated with the characteristic exponent of largest magnitude, for an excitation
parameter µ = 0.15. Excellent agreement is found for all results.
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7.2 Jeffcott rotor with compliant bearings

The Jeffcott rotor is composed of a flexible anisotropic shaft of length L = 1 m and of a
mid-span rigid disk of mass M = 5 kg and radius R = 0.18 m, as shown in Fig. 5. The shaft,
modeled by six equally spaced cubic beam elements, is connected to end flexible couplings,
represented by concentrated spring. The finite stiffness end bearings consist of revolute joints
connected to the ground by concentrated springs. The relative rotation of the left hand side
revolute joint was prescribed to be a constant angular velocity Ω.

The sectional properties of the shaft are as follows: bending stiffness, EI2 = 175 and EI3 =
98.9 N·m2, mass per unit length ms = 0.00475 kg/m, torsional stiffness GJ = 71.9 N·m2,
and polar moment inertial Iρ = 1.01 10−5 kg·m2. The elastic couplings had very low axial
stiffness kc

1 = 10.0 N/m and bending stiffnesses cc2 = cc3 = 10.0 N·m/rad but high transverse
stiffnesses kc

2 = kc
3 = 100 MN/m and torsional stiffness cc1 = 100 MN·m/rad; the elastic

bearings have low transverse stiffnesses kb
2 = kb

3 = 30 kN/m, high axial stiffness kb
1 = 100

MN/m, and high bending stiffnesses cb1 = cb2 = cb3 = 100 MN·m/rad. Simulations were run
for a total of 10 periods, T = 2π/Ω, with a time step ∆t = 0.1 msec, after application of an
external perturbation along the ı̄3 axis, f3 = 10 sin(20πt) for t ∈ [0, 50] msec, to rigid disk.
For the stability analysis, the sampling period is T/128 sec and 3 proper orthogonal modes
were used. System characteristics were extract from matrix Q̂, see eq. (17).

A analytical solution of this problem was obtained based on classical modal reduction tech-
niques. The bending flexibility of the shaft was taken into account, but its torsional flexibility
was ignored. Furthermore, since the mid-span rigid disk is much more massive than the shaft,
the inertial effects of the shaft were ignored. When the equations of motion for this simplified
system are written in a rotating frame of reference, a set of constant coefficient equations
results, and classical methods can be used to evaluate stability of the system.

Fig. 6 compares the predictions of the simplified analytical model with those of the proposed
approach. Due to the bending stiffnesses anisotropy of the shaft, the system is unstable for an-
gular speeds between the two lowest bending frequencies of the shaft, i.e. for 29.2 < Ω < 37.3
rad/sec. Note the excellent agreement between the predictions of the two approaches. Fig. 7
shows the original and reconstructed signals for the three generalized signals corresponding
the three proper orthogonal modes selected for the stability analysis, at an angular speed
Ω = 24 rad/sec. The original and reconstructed are in a good agreement, ϵ = 3.99 10−4,
9.10 10−4 and 1.95 10−4 for the three signals, respectively, see eq. (25). Table 1 shows the

coefficient of the Fourier transform of aj associated with the frequency ωj

√
1− ζ2j = 8.643

rad/sec extracted from two signals corresponding to the two transverse displacements of
the rigid disk. The only non vanishing component of the Fourier transforms corresponds to

k = 1; this means that the frequency of the system is ωj

√
1− ζ2j +Ω, removing the frequency

indeterminacy.

Next, the effect of damping was investigated. Damping in the rotating system was modeled
by viscous forces proportional to the strain rates, F d = µsKsė, where µs is the damping
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coefficient, e the strain array, and Ks the beam cross-sectional stiffness matrix. On the
other hand, damping in the non-rotating system was modeled by transverse viscous dampers
of constant µb in the bearing supports. Fig. 8 compares the predictions of the simplified
analytical model and of the present approach, for damping parameters µs = 1 msec and
µb1 = µb2 = 3 N·sec/m. For shaft speeds below the stability boundary, the two bending
modes are now damped. The fixed and rotating system damping mechanisms have a modest
effect on the size of the unstable zone, 29.4 < Ω < 37.0 rad/sec, and do not stabilize the
system at higher shaft speeds.

In a second set of simulations, the compliant bearing at the right hand side of the shaft was
replaced by a spatial clearance element, see Fig. 5(b), which models the clearance between
the inner and outer races of a journal bearing, as described by Bauchau and Rodriguez [40].
Intermittent contact is allowed between a disk of radius 80 mm, representing the journal,
and a cylinder, of radius 80.8 mm, representing the outer race of the bearing. When the two
components are in contact, an elastic contact model is activated that consists of an elastic
force, F e = 15 a MN/m, where a is the approach between the inner and outer races, and of
a dissipative force, F d = F eµȧ, where the damping coefficient µ = 1.0 10−3 sec/m.

Due to the intermittent nature of the contact between the inner and outer races, the problem
presents severe nonlinearities, and a chaotic response. Clearly, an analytical solution of the
problem would be difficult to obtain, and furthermore, any stability analysis approach based
on linearization of the equation of motions would be unable to capture the effect of intermit-
tent contact. Indeed, the linearization procedure could be performed about the contacting or
non contacting state, but not for intermittent contact. When contact occurs, the modes of
the system are those of a simply supported beam, but in the non contacting state, the modes
are those of a simply supported-free beam. Fig. 9 shows the frequency and damping of the
lowest damped modes of the system. Since no analytical solution is available, the solution
of the problem featuring two compliant bearings is presented in dotted lines, for reference.
Clearly, the nonlinear behavior of the system greatly affects the stability characteristics of
the system. Due to the additional modes of the system stemming from the varying boundary
conditions at the spatial clearance joint, additional frequencies and associated dampings are
identified for rotor speeds larger than 33 rad/sec. A larger scatter in the predictions is ob-
served, due to the chaotic nature of the response. Note that strictly speaking, the proposed
methodology does not apply to nonlinear systems since it is based on Floquet’s theory. How-
ever, partial Floquet or autoregressive methods are routinely used to reduce experimental
data, although they strictly apply to linear systems only. Clearly, the proposed approach
closely follows the procedures used to reduce experimental data.

7.3 Flutter of a Rectangular Planform Wing

The last example is an aeroelastic problem dealing with the symmetric flutter of a rectangu-
lar planform wing clamped at its mid-point [41]. Due to symmetry, a half configuration was
modeled and proper symmetry conditions were applied. This problem involves both struc-
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tural and aerodynamic states. The half wing has a rectangular planform of length L = 20
ft and chord length c = 6 ft. The flutter speed of the wing was experimentally measured as
UF = 590 ft/sec. The structural properties of the cantilevered wing are as follows: bending
stiffness, EI = 2.4 107 lbs·ft2, torsional stiffness, GJ = 2.4 106 lbs·ft2, mass per unit span,
m = 0.75 slugs/ft, polar moment of inertia, Iρ = 1.95 slugs·ft. The airfoil quarter-chord and
center of mass are located 0.5 and 0.6 ft aft the elastic axis of the wing, respectively. The
wing semi-span is modeled with four cubic beam elements.

The aerodynamic model combines thin airfoil theory with a three dimensional dynamic
inflow model. The airfoil has a constant slope of the lift curve a0 = 6.28, and the moment
coefficients about the quarter-chord are zero. The inflow velocities at each span-wise location
are computed using the finite state induced flow model developed by Peters et al. [42,43].
The number of inflow harmonics was selected as m = 9, corresponding to 55 aerodynamic
inflow states for this symmetric problem. Airloads were computed at 9 stations along the
wing span, located at the positions corresponding to Gaussian quadrature. Selecting larger
numbers of aerodynamic states or airloads computation points did not significantly affect
the results.

The simulation was run for a total period of 1 sec, using a constant time step ∆t = 1 msec.
This example will be used to illustrate the two strategies proposed in this paper: the use
of user selected signals and the use of optimized signals based on proper orthogonal modes.
In the first case, denoted case 1, two signals were used: the three-quarter span transverse
displacement and twist of the wing. In the second case, denoted case 2, the proper orthogonal
modes of the system were first extracted from the response of all the degrees of freedom,
the six displacement components at each of the 12 nodes of the structural model, and the
airload components at the 9 stations. The criterion ErT > 0.92 lead to the use of 3 proper
orthogonal modes; on the other hand, rH0 was set to 6, corresponding to ErH0

> 0.97. The
signals used for stability analysis spanned the response of the system for t ∈ [0.30, 0.95]
sec, with a sampling period of 2 msec. Fig. 10 shows the frequency and damping of the two
modes with the lowest frequencies versus far field flow velocity. This figure is similar to that
obtained from the classical, two degree of freedom analysis of a wing section [44]. The lowest
bending and torsional modes nearly coalesce at flutter. Note that the higher bending and
torsional modes do not appear on the figure, although they are included in the model. This
is due to the fact that these modes are heavily damped by the aerodynamic forces, and hence
are identified as “noise” by the proposed methods. From fig. 10, the flutter speed is found
to be UF = 585 ft/sec, for cases 1 and 2 ; this compares favorably with the experimentally
measured flutter speed of 590 ft/sec. For case 2, the optimized sensors obtained from the
proper orthogonal modes allow a more robust determination of the frequency and damping
rates: for air speeds above 520 ft/sec, the predictions based on two signals only are no longer
satisfactory for the second mode of the system. It should be noted, however, that both cases
predict the same flutter speed. Predictions become less accurate in the unstable regime,
due to the nonlinear behavior associated with large deflections of the wing. Furthermore, it
becomes increasingly difficult to trace the second mode because it is heavily damped.

For this example, the four stability algorithms presented in this paper, see eqs. (16), (17),
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(20) and (21), were used to predict the frequencies and damping of the system for a far
field flow velocity U = 590 ft/sec. Identical predictions, within four significant digits, were
obtained from the eigenvalues of the four matrices.

8 Conclusions

Linearized stability analysis methodologies that are applicable to large scale, multi-physics
problems were presented in this paper. The first contribution of this work is the development
of two classes of closely related algorithms based on a partial Floquet and on an autoregres-
sive approach, respectively. Second, a number of other approaches, such as Prony’s method
or Poincaré mapping, have been shown to be identical to those proposed here. The common
foundation of all these approaches was emphasized. Third, the robustness of the approach
was improved by using optimized signals that are derived from the proper orthogonal modes
of the system, a set of orthogonal modes capturing the dominant motion of the system in an
energy norm. Even for large systems, proper orthogonal modes can be effectively extracted
from the very large set of data represented by the response of all degrees of freedom of the sys-
tem using the Lanczos algorithm. Finally, signal synthesis based on the identified frequencies
and damping rates was shown to be an important tool for assessing the accuracy of the iden-
tified parameters; furthermore, it provides a means of resolving the frequency indeterminacy
associated with the eigenvalues of the transition matrix for periodic systems. The proposed
approaches are computationally inexpensive and consist of purely post processing steps that
can be used with any multi-physics computational tool or with experimental data. Unlike
classical stability analysis methodologies, the linearization of the equations of motion of the
system is not required. In the proposed implementation, the singular value decomposition is
systematically used as a means of dealing with noisy, highly redundant data sets.
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gj0 gj1 gj2 gj3

signal 1 0.0045 0.4949 0.0060 0.0091

signal 2 0.0044 0.4146 0.0081 0.0074

Table 1
Magnitude of the Fourier coefficients of aj for signals 1 and 2.
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Figure 1. Strutt’s diagram. Stability boundaries predicted by Hill’s infinite determinant, solid lines.
Present predictions for µ = 0.15 and 0.25: stable solution, (◦), unstable solution, (×).
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Figure 2. Frequency (top figure), damping (middle figure) and norm (bottom figure) of the maxi-
mum eigenvalue of the system versus excitation frequency, for µ = 0.15. Floquet’s classical analysis:
solid line; present approach: (◦).
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Figure 3. Strutt’s diagram. Stability boundaries predicted by Hill’s infinite determinant, solid lines.
Present predictions for µ = 0.15 and 0.25: stable solution, (◦), unstable solution, (×).
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Figure 4. Frequency (top figure), damping (middle figure) and norm (bottom figure) of the maxi-
mum eigenvalue of the system versus excitation frequency, for µ = 0.15. Floquet’s classical analysis:
solid line; present approach: (◦).
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Figure 5. Flexible shaft with end flexible couplings. Configuration (a): the shaft is supported by
compliant bearings. Configuration (b): the right support consists of spatial clearance joint.
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Figure 7. Original (dashed line) and reconstructed (solid line) generalized signals corresponding to
the three proper orthogonal modes at Ω = 24 rad/sec.
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Figure 8. Frequency and damping of the two least-damped modes versus shaft angular velocity in
the presence of damping. Simplified modal solution: solid line; proposed approach: first mode, (◦),
second mode (2).
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Figure 9. Frequencies and damping of the least-damped modes versus shaft angular velocity. Sim-
plified modal solution for compliant bearings, configuration (a): dashed line. Predictions for con-
figuration (b): symbols.
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Figure 10. Frequencies and damping of the cantilevered wing. Case 1 : dashed line (⋄): Case 2 : solid
line (2).

32



Appendix A The Singular Value Decomposition

The present work requires the manipulation of large data sets that are highly redundant and
noisy. The main tool for extracting reliable information from these data sets is the singular
value decomposition [32]. The singular value decomposition of a real rectangular matrix
S ∈ Rm×n, m > n, of rank n is

Sm×n =
[
Um×n Γm×(m−n)

]  Σn×n

0(m−n)×n

V T
n×n, (A1)

where Σ = diag(σi) is a unique diagonal matrix of nonnegative singular values σi; [U Γ] an
orthogonal matrix, implying UTU = I, ΓTΓ = I, UTΓ = 0 and ΓTU = 0; V an orthogonal
matrix, implying V TV = V V T = I, and Γ forms the null space of ST , i.e. STΓ = 0. The
compact form of the singular value decomposition is S = UΣV T .

When dealing with highly redundant data sets, many of the singular values of S will be
nearly zero. Typically, if the singular values are ordered in descending order, the following
situation is encountered

σ1

σ1

≥ σ2

σ1

≥ . . . ≥ σr

σ1

≥ σr+1

σ1

≈ σr+2

σ1

≈ σn

σ1

≈ 0. (A2)

In practice, this situation is met when σr+1/σ1 < ε, i = r+1, r+2, . . . , n, where ε is a small
number. In effect, it follows that rank(S) = r < n. Matrix S can now be approximated as
S ≈ Sr = UrΣrV

T
r , where matrices Ur and Vr consist of the first r columns of U and V ,

respectively, and Σr is the r × r principal minor of Σ; it can be shown that Sr is the rank
r matrix that is closest to S in the Frobenius norm. This approximation is based on the
selection of the small quantity, ε; a more physically meaningful criterion to determine the
rank of S is the following energy ratio criterion

Er =

(
r∑

i=1

σi

)
/

(
n∑

i=1

σi

)
, (A3)

that indicates the amount of energy captured in the retained modes as a fraction of the total
amount of energy contained in the signal.
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