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Abstract

This paper focuses on the interpolation of the kinematic �elds describing the con�guration
of geometrically exact beams, namely the position and rotation �elds. Two kinematic repre-
sentations are investigated: the classical approach that treats the displacement and rotation
�elds separately and the motion approach that treats those two �elds as a unit. The latter
approach is found to be more consistent with the kinematics description of beams. Then, two
�nite element interpolation strategies are presented and contrasted. The �rst interpolates the
displacement and rotation �elds separately, whereas the second interpolates both �elds as a
unit, in a manner consistent with the motion approach. The performance of both strategies
is evaluated in light of the fundamental requirements for the convergence of the �nite element
method: the ability to represent rigid-body motion and constant strain states. It is shown that
the traditional uncoupled interpolation scheme for the position �eld approximates that based
on the motion approach and that the coupling induced by the interpolation of motion yields
superior convergence rates for the representation of constant strain states. This property is
known to lead to �nite elements that are less prone to the locking phenomenon.

1 Introduction

Many structural components of mechanical systems can be modeled accurately as exible beams.
When these components undergo �nite motions, a non-linear approach is needed. The geometrically
exact beam theory [1, 2] is often selected because it uses an exactkinematic description of the
structure involving �nite displacement and rotation �elds, as expected for Cosserat solids. Because
�nite rotations are present, the con�guration space is nonlinear and non-commutative.

The mechanical properties of the system are represented by a strain energy function that depends
on sectional strain measures. Application of the fundamental principles of mechanics then yields the
six nonlinear, ordinary di�erential equations of equilibrium. Typically, the �nite element method
is used to �nd an approximate numerical solution to these nonlinear equations and because it is
di�cult to deal with nonlinear and non-commutative con�guration sp aces, numerous approaches
to the problem have been proposed. The earliest researchers have used the classical interpolation
tools of the �nite element methods, see Simo and Vu-Quoc [3], Cardona and G�eradin [4], Atilgan et
al., [5] or Ibrahimbegovi�c [6]. While all these approaches use identicalsectional strain measures to
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de�ne the beam's strain energy, the numerical processes used toobtain the solution di�er. Notable
di�erences are found in the parametrization and interpolation of the rotation �eld.

Several issues with these early techniques have been documentedin the literature. Cris�eld and
Jeleni�c [7, 8] were the �rst to point out that the strain measuresused in the formulation should be
objective, i.e., should be invariant under the addition of a rigid-body motion to the con�guration
of the system. They showed that several commonly used discretization schemes for rotation �elds
do not satisfy these requirements: interpolated strain measuresdo not remain invariant under
a superimposed rigid-body motion. Typically, the use of mesh and loadstep size re�nements
alleviate these problems. Romero and Armero [9] developed interpolation schemes that guarantee
objectivity and the same goal was achieved by Betsch and Steinmann [10] who used a redundant
set of generalized coordinates to represent the con�guration ofthe system. Another recurring
issue of these early schemes is the locking phenomenon. The requirement for the convergence of
the �nite element method is that the interpolated �eld be able to capture constant strain states
accurately, see Zienkiewicz [11]. Unfortunately, when using the polynomial interpolation functions
found in �nite element textbooks for interpolating beam problems, itis not possible to represent
constant or vanishing shear strain distributions, for instance, resulting in the well-known shear
locking phenomenon. Typically, reduced integration, higher order-interpolation schemes, or both,
are implemented to mitigate this problem.

The de�ciencies of these schemes limit their performance and indicate that fundamental un-
derlying concepts are not treated properly. The goal of this paper is to present a fresh look at
beam formulation. The choice of an interpolation strategy is rootedin the kinematic description of
the beam. In the classical approach,e.g. [3, 4, 12, 9, 10], the con�guration space is considered as
SO(3) � R3: independent rotation,SO(3), and displacement,R3, �elds are used. In contrast, the
present paper advocates the motion-based approach, in which the con�guration space is selected as
SE(3) = SO(3) n R 3: the rotation and displacement �elds are treated as a single, coupled entity,
called a \frame �eld" or a \motion �eld." Although this framework is use d widely in the robotic
community, see Angeles [13], McCarthy [14], Murrayet al. [15] or Selig [16], it has been largely
ignored by researchers modeling exible structures. Such coupledapproach for beams is encoun-
tered, e.g., in the work of Borri and Bottasso [17] and Sonnevilleet al. [18]. Some researchers, e.g.
Hodges [19] and Zupan and Saje [20] have advocated the use of a strain based approach, which
relies on the intrinsic formulation of the beam equations and indirectlycouples displacement and
rotation.

From a mechanical viewpoint, displacement and rotation �elds are coupled: a bending moment
applied at the tip of a cantilevered beam cause transverse displacement of the reference line and
application of a tip shear force produces rotation of the cross-sections. Classical formulations treat
the rotation and displacement �elds as independent; their coupling stems from the equilibrium
equations only. Accordingly, the interpolation method used in the classical approach interpolate
the two �elds independently. This paper shows that treating the rotation and displacement �elds
as a single, coupled entity,i.e., as a motion, is a more natural approach, which results in a coupled
interpolation of the two �elds. This choice leads naturally to the invariance of the formulation under
the superposition of rigid-body motions and to the objectivity of the interpolated strain measures.
The resulting computational process becomes more e�cient, as observed by Ga�ce�sa and Jeleni�c [21].

This paper is organized as follows. First, the kinematic description ofbeams based on the clas-
sical and motion approaches are presented and contrasted. Special attention is devoted to the way
in which these two approaches behave under the superposition of rigid-body motions. Objectivity
of strain measures is discussed next and the kinematic description based on motion is shown to
provide important insight into the problem. Finally, interpolation schemes for geometrically exact
beams are investigated. It is argued that the motion approach leads to more e�cient numerical
schemes that are objective and can represent constant strain states more accurately.
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2 Geometrically exact beam formulation

This section reviews the formulation of geometrically exact beams. First, the kinematics of both
classical and motion approaches are presented and contrasted.Because this paper focuses on in-
terpolation techniques, which are of a purely kinematic nature, it is not necessary to derive the
equilibrium equations for the current discussion.

A beam is de�ned as a structure having one of its dimensions much larger than the other two.
The reference curve of the beam is de�ned along that longer dimension and the cross-section slides
along this curve. The cross-section's geometric and physical properties are assumed to remain uni-
form along the beam's span. Often, beams are complex build-up structures presenting elaborate
sectional geometries and laminated composite materials have foundincreased use in many applica-
tions, leading to heterogeneous, highly anisotropic structures. Finally, the beam's reference curve
may also be initially curved.

For such constructions, cross-section out-of-plane and in-plane warping have been shown [22, 23,
24, 25, 26, 27, 28] to alter stress distributions and sectional sti�ness properties signi�cantly. These
authors have developed rigorous reduction procedures to deriveone-dimensional beam equations
from the equations of three-dimensional elasticity. The cross-sections of the beam do not remain
planar nor normal to the deformed reference curve of the beam,but undergo a complex, three-
dimensional warping deformation. Nevertheless, the kinematics ofthe beam can be described
by a displacement �eld and a rotation �eld that de�ne the six sectional strain measures. The
sectional sti�ness matrix is a byproduct of the reduction procedure: the strain energy in the three-
dimensional structure is equal to that evaluated through the sectional sti�ness matrix and sectional
strain measures. These reduction procedures provide a rigorousmeans of approximating the three-
dimensional structure by a Cosserat solid.

2.1 Beam kinematics

Figure 1 depicts the reference and deformed con�gurations of a naturally curved and twisted beam.
The beam is generated by sliding its cross-section,A , along reference curveC0 in the reference
con�guration.
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Figure 1: Con�guration of a curved beam.

In the reference con�guration, reference curve
C0 is de�ned by parametric equationx0(� ), where
x0 is the position vector of point B on C0 with
respect to the origin of the inertial frame,F I =
[O; I = (�{1; �{2; �{3)], and � 2 R is the arc-length
coordinate along curveC0. The cross-section is
de�ned by frame F 0 =

�
B 0; B0 = ( �b10; �b20; �b30)

�
.

The plane of the cross-section is determined by
two mutually orthogonal unit vectors, �b20 and �b30.

In the deformed con�guration, the parametric
equation of reference lineC becomesx(� ). Typ-
ically, the material plane of the cross-section is
now distorted and warped. For convenience, a
�ctitious plane of the cross-section is introduced,
which is determined by two mutually orthogonal
unit vectors, b2 and b3, as depicted in �g. 1. The
�ctitious rigid cross-section is de�ned by frame
FR = [ B ; BR = ( b1; b2; b3)] and the displacement
�eld over the cross-section is decomposed into an
arbitrarily large rigid-section motion and an arbitrary warping �eld.
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The position vector of material pointP0 of the beam in the reference con�guration is given by

xP 0(�; � 2; � 3) = x0(� ) + � 2
�b02(� ) + � 3

�b03(� ); (1)

where � 2 and � 3 are the coordinates measuring length along unit vectors�b02 and �b03, respectively.
It is convenient to introduce vectorq(� 2; � 3) = f 0; � 2; � 3gT and eq. (1) becomes

xP 0(�; � 2; � 3) = x0(� ) + R
0
(� )q(� 2; � 3); (2)

whereR
0
(� ) = [ �b10; �b20; �b30] 2 SO(3) is the rotation tensor for the cross-section.

In the deformed con�guration, the position vector of material point P becomes

xP (�; � 2; � 3) = x(� ) + R(� )R
0
(� )q(� 2; � 3); (3)

where R(� ) 2 SO(3) is a rotation �eld associated with the cross-sections. Becausethe beam is
allowed to twist and shear, this rotation �eld is not related to the tangent vectors to curveC, and
in particular, to Frenet's triad associated with curveC. Here, the description of the warping �eld
is disregarded without loss of generality. Indeed, the warping �eld eventually a�ects the sectional
sti�ness matrix of the beam and leads to interpret the rotation �eldas a �ctitious averaged rotation
�eld over the cross-sections but it does not a�ect the kinematic setting of a beam.

A cursory look at eqs. (2) and (3) reveals that the beam kinematicsis associated with frame
transformations of the cross-sections: the reference con�guration, characterized by rotation tensor
R

0
(� ) and position vector x0(� ), is transformed into the deformed con�guration characterizedby

rotation tensor R(� )R
0
(� ) and position vectorx(� ). Two approaches can be followed to represent

this change of frame:(1) the classical approach, in which the position and rotation �elds are viewed
as independent, and(2) the motion approach, which treats the same two �elds as a unit,i.e. a
motion �eld or a frame �eld. Although these two approaches eventually use identical sectional strain
measures and equivalent equilibrium equations, they provide two di�erent frameworks to describe
the beam kinematics. The two approaches are described in the following sections.

2.1.1 The classical approach

In the classical approach, the rotation �eld inSO(3) and the displacement �eld inR3 are treated in-
dependently. Most researchers describing beam kinematics have followed this approach, see Simo [1],
Cardona and G�eradin [4], Ibrahimbegovi�c [29], Romero and Armero[9], Atilgan et al., [5], Betsch
and Steinmann [10], among many others. The reference and deformed con�gurations are denoted
symbolically asQ[R

0
; x0] and Q[R R

0
; x], respectively. The transformation from the reference to

the deformed con�guration is then obtained by the composition operation, denoted � ,

Q
h
R R

0
; x

i
= Q

�
R; d

�
� Q

h
R

0
; x0

i
= Q

h
R R

0
; x0 + d

i
; (4)

whereQ[R; d] is the transformation that brings the reference to the deformed con�guration. Note
that rotation and displacement entities are composed independently: rotations compose through a
product of orthogonal tensors representing rotations whereas displacements compose through the
addition of vectors,x = x0 + d.

The composition operation expressed by eq. (4) can be formally performed through a matrix
product when con�guration Q[R; x] is represented by matrixQ(R; x), of size 7� 7, de�ned as

Q(R; x) =

2

4
R 0

3� 3
03� 1

0
3� 3

I
3� 3

x
01� 3 01� 3 1

3

5 : (5)
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With this de�nition, composition rule (4) is expressed asQ(R R
0
; x) = Q(R; d)Q(R

0
; x0). Changes

in con�guration have now been cast in the familiar framework of linearalgebra. Unfortunately,
the original kinematics of the beam described by eqs. (2) and (3) cannot be expressed in the same
framework easily. Several representations are possible, and the7� 7 introduced in eq. (5) serves an
illustrative purpose only.

2.1.2 The motion approach

In the motion approach, the reference and deformed con�gurations are represented symbolically as
M [R

0
; x0] and M [R R

0
; x], respectively. The transformation from the reference to the deformed

con�guration is obtained by the composition operation,

M
h
R R

0
; x

i
= M

�
R; v

�
� M

h
R

0
; x0

i
= M

h
R R

0
; R x0 + v

i
; (6)

where M
�
R; v

�
is the motion that brings the reference to the deformed con�guration. Note that

the composition rules for the classical and motion approaches di�er, see eqs. (4) and (6), respec-
tively. Clearly, the compositions of rotation and displacement are now coupled: the composition
of displacements,x = R x0 + v, involves the rotation tensor. Comparing eqs. (4) and (6) yields
v = ( I

3� 3
� R)x0 + d. Although vectors v and d di�er, the reference and deformed con�gurations

are identical in both approaches.
The composition operation expressed by eq. (6) can be performedthrough a matrix product

when con�guration M
�
R; v

�
is represented by matrixM (R; v), of size 4� 4, de�ned as

M =
�

R v
01� 3 1

�
: (7)

With this de�nition, composition rule (6) is expressed asM (R R
0
; x) = M (R; v)M (R

0
; x0). In

the following, the reference and deformed con�gurations are denoted G
0

= H (R
0
; x0) and G =

M (R R
0
; x), respectively, whereas the change in con�guration is denotedH = M (R; v), i.e. G =

H G
0
. The motion approach also presents a close connection to the beamkinematic description

presented in section 2.1. Indeed, introducing the homogeneous representation of vectors, eqs. (2)
and (3) can be recast as

�
xP 0(�; � 2; � 3)

1

�
= M (R

0
; x0)

�
q(� 2; � 3)

1

�
; (8a)

�
xP (�; � 2; � 3)

1

�
= M (R R

0
; x)

�
q(� 2; � 3)

1

�
; (8b)

where the matrix representation of the motion plays a prominent role. Several representations are
possible. For instance, Sonnevilleet al. [18] used the homogeneous representation presented in
(7), Borri et al. [17, 30] and Bauchau [31] used the motion tensor representation whereas Han and
Bauchau [27] used the dual quaternions representation. The 4� 4 matrices introduced in eq. (7)
serve an illustrative purpose only.

2.1.3 Remark

Multiplications from the left-hand side only have been considered in the composition operations of
eqs. (4) and (6). Multiplications from the right-hand side could also be considered for both classical
and motion approaches. In fact, the right-hand side composition inthe motion approach leads to
the so-called \�xed-pole formulation" developed by Borriet al. [30, 32]. From a tensor analysis
perspective, the left- and right-hand side compositions are related to resolving tensor components
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in the material and inertial frames, respectively. This paper focuses on the motion formulation
equipped with the left-hand side composition because this approachenjoys properties that are not
shared by the other approaches.

2.2 Superimposed rigid-body motion

Rigid-body motions play a fundamental role in mechanics: by de�nition, rigid-body motions gen-
erate no deformation of the body. Indeed, a rigid-body motion is de�ned as the motion that leaves
the distance between any two material points of a body unchanged. A corollary, is that rigid-body
motions leave the angle between any two material lines of the body unchanged. If elongations of
material lines and angular distortions of material line pairs are inhibited, strains vanish.

Let xa
P (�; � 2; � 3) and xb

P (�; � 2; � 3) be the position vectors of material pointP in con�gurations
a and b of a body. Consider the following transformation of the position vectors,

xb
P (�; � 2; � 3) = xR + RRxa

P (�; � 2; � 3); (9)

whereRR 2 SO(3) is a rigid-body rotation of the entire body about the origin of theinertial frame
and xR 2 R3 a subsequent rigid-body translation of the entire body. It is veri�ed easily that eq. (9)
describes a rigid-body motion: indeed, if applied to any two material points of the body, it leaves
their distances unchanged. Applied to an arbitrary, possibly deformed, con�guration of the beam,

xa
P (�; � 2; � 3) = xa(� ) + Ra(� )R

0
(� )q(� 2; � 3); (10)

equation (9) implies

xb
p(�; � 2; � 3) = xR + RRxa(� ) + RRRa(� )R

0
(� )q(� 2; � 3); (11)

leading to a beam con�guration characterized by position vectorxb(� ) = xR + RRxa(� ) and rotation
tensor Rb(� )R

0
(� ) = RRRa(� )R

0
(� ).

The classical and motion approaches represent rigid-body motionsof beams in distinct manners.
In the classical approach, con�gurationQ[Ra(� )R

0
(� ); xa(� )] of a beam is moved by means of a

rigid-body motion to a new con�guration Q[Rb(� )R
0
(� ); xb(� )] which, according to composition

rule (4) for the classical approach, are related as

Q
h
Rb(� )R

0
(� ); xb(� )

i
= Q

�
R; d

�
� Q

h
Ra(� )R

0
(� ); xa(� )

i
; (12)

leading to
Q

�
R; d

�
= Q

h
RR ; xR + ( RR � I

3� 3
)xa(� )

i
: (13)

On the other hand, using composition rule (6) characterizing the motion approach, the relationship
between the same con�gurations becomes

M
h
Rb(� )R

0
(� ); xb(� )

i
= M

�
R; v

�
� M

h
Ra(� )R

0
(� ); xa(� )

i
; (14)

leading to
M

�
R; v

�
= M

�
RR ; xR

�
: (15)

Comparing eqs. (13) and (15) shows that the classical and motion approaches handle rigid-body
motions in a di�erent manner. In both approaches, the rotation tensors are identical and equal
the rigid-body rotation tensor. The displacement vector, however, is quite di�erent: for the motion
approach, the displacement vector is simply the rigid-body translation whereas in the classical
approach, the displacement vector is spatially varying and dependson the rigid-body rotation
tensor. Clearly, the motion approach greatly simpli�es the manipulation of rigid-body motions,
which is an essential aspect of mechanical formulations. It can be shown that the simple result
expressed by eq. (15) only occurs when left-hand side compositions are used.
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2.3 Sectional strain measures

Sectional strain measures describe the deformation incurred during the motion that brings the
beam from its reference to its deformed con�guration. They mustsatisfy two requirements: (1)
must vanish in the reference con�guration and(2) must remain una�ected when a rigid-body motion
is superimposed to both con�gurations.

2.3.1 The classical approach

In the classical approach, the rotation and displacement �elds aretreated independently and two
sets of sectional strain measures are derived from those two �elds independently. The material,
or local frame, derivative of the rotation tensor in the referenceand deformed con�gurations are
de�ned as

~k0(� ) = RT
0
(� )R0

0
(� ); (16a)

~k(� ) =
h
R(� )R

0
(� )

i T h
R(� )R

0
(� )

i 0
; (16b)

respectively. Notation (�)0 indicates a derivative with respect to curvilinear variable� and notation
~(�) indicates a 3� 3 skew-symmetric matrix, say ~a, built from the components of 3� 1 vector
a = f a1; a2; a3gT . Curvature tensors ~k0 and ~k are skew-symmetric because rotation tensors are
orthogonal. The elastic curvature �eld is now de�ned as

{ (� ) = k(� ) � k0(� ): (17)

The elastic curvature �eld satis�es the two requirements stated earlier. First, the curvature �eld
vanishes in the reference con�guration. Second, it is una�ected by the superposition of rigid-body
motions. In the reference con�guration, eq. (11) implies that thesuperposition of a rigid-body
rotation, RR , transforms R(� )R

0
(� ) into RRR(� )R

0
(� ). The material derivative now becomes

[RRR(� )R
0
(� )]T [RRR(� )R

0
(� )]0 = [ R(� )R

0
(� )]T [R(� )R

0
(� )]0 = ~k(� ), where the second equality

stems from the fact that rotation tensorRR is spatially invariant. Clearly, the material derivative,
and therefore the elastic curvature �eld, is una�ected by the superposition of rigid-body rotations.
Furthermore, it is easily shown that the material derivative in the reference con�guration is not
a�ected by a rigid body transformation, which makes the components of the material derivative
vectors independent of the choice of a frame for the description of the reference con�guration.

The spatial derivative of the displacement �eld,x0(� ), is not invariant under a superposed rigid-
body motion and therefore, cannot be used as is as a strain measure. Indeed, eq. (11) shows that the
superposition of a rigid-body rotation transformsx0(� ) into RRx0(� ). To overcome this problem,
material derivatives are introduced in the reference and currentcon�gurations as

c0(� ) = RT
0
(� )x0

0(� ); (18a)

c(� ) =
h
R(� )R

0
(� )

i T
x0(� ); (18b)

respectively. The elastic strain �eld is de�ned as

 (� ) = c(� ) � c0(� ): (19)

The elastic strain �eld satis�es the two requirements stated earlier. First, the strain �eld vanishes
in the reference con�guration. Second, it is una�ected by the superposition of rigid-body motions.
In the reference con�guration, eq. (11) implies that the superposition of a rigid-body rotation
transforms R(� )R

0
(� ) into RRR(� )R

0
(� ) and x0(� ) into RRx0(� ). The material derivative now

7



becomes [RRR(� )R
0
(� )]T [RRx(� )]0 = [ R(� )R

0
(� )]T x0(� ) = c(� ), where the second equality stems

from the fact that rotation tensor RR is spatially invariant. Clearly, the material derivative, and
therefore the elastic strain �eld, is una�ected by the superposition of rigid-body motions. Again, it
is easily shown that the material derivative in the reference con�guration is not a�ected by a rigid
body transformation, which makes the components of the material derivative vectors independent
of the choice of a frame for the description of the reference con�guration.

The material derivatives are gathered into 6-dimensional vectorsE T
0 (� ) = f cT

0 (� ); kT
0 (� )g and

E T (� ) = f cT (� ); kT (� )g, and the six components of the sectional strain measure are de�ned as

E(� ) = E(� ) � E 0(� ) =
�

 (� )
{ (� )

�
: (20)

These classical sectional strain measures are those postulated by Simo and Vu-Quoc [3]. The
physical meaning of each component is understood easily: 1 is the axial strain,  2 and  3 the shear
strains along unit vectors�b2 and �b3, { 1 the twist rate, and { 2 and { 3 the bending curvatures about
unit vectors �b2 and �b3.

2.3.2 The motion approach

The sectional strain measures are derived easily from the motion approach. Using the 4� 4 matrix
representation de�ned by eq. (7), the following result is obtained,

G� 1(� )G0(� ) =
�
[R(� )R

0
(� )]T � [R(� )R

0
(� )]T x(� )

01� 3 1

� �
[R

0
(� )R(� )]0 x0(� )
01� 3 0

�
(21)

The following notation is introduced:

G� 1(� )G0(� ) = ~E(� ) =
� ~k(� ) c(� )

01� 3 0

�
; (22)

where matrix ~k(� ) and vectorc(� ) are de�ned by eqs. (16b) and (18b), respectively, and~(�) indicates
the 4� 4 matrix built as above from the components of the 6� 1 vectorE(� ). Clearly, E is invariant
under a superimposed rigid-body motion since the latter, which takes the form of a left multiplication
of G by a spatially invariant M (RR ; xR ), leavesE una�ected. Note that taking a spatial derivative
of eq. (8b) yields �

x0
P (�; � 2; � 3)

0

�
= G(� ) ~E(� )

�
q(� 2; � 3)

1

�
; (23)

which shows the close connection between the motion approach andbeam kinematics.
It is veri�ed easily that ~E0(� ) = G� 1

0
(� )G0

0
(� ) and the de�nition of the sectional strainsE(� )

is then given by eq. (20). All the sectional strain components are obtained from a single matrix
operation.

2.4 Strain energy

Based on these sectional strain measures, the strain energy in the beam is expressed as

A =
1
2

Z L

0
ET (� )D(� )E(� ) d�; (24)

whereD(� ) is the 6� 6 sectional sti�ness matrix. For uniform beams presenting simple cross-section
geometry and material distribution, the sectional sti�ness matrixis diagonal and remains constant
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along the span of the beam. In more general cases, it can be derived from a linear �nite element
analysis of the cross-sections, see Bauchau and Han [25], for instance.

The strain energy is identical for the classical and motion approaches and hence, application of
the principle of minimum total potential energy will yield equivalent equilibrium equations. The
underlying kinematic representation is, however, di�erent. Because this paper focuses on the kine-
matics of the �nite element interpolation, it is not necessary to derive the equilibrium equations. For
the interested readers, the references cited in the introductionall derive the equilibrium equations
of the problem.

3 Finite element interpolation

The classical interpolation approaches used for linear spaces are reviewed in section 3.2 and inter-
polation techniques suitable for geometrically exact beams are discussed in section 3.3. The choice
of the interpolation scheme for the position and rotation �elds is essential as it determines the in-
terpolation of the strain measures and eventually the elastic forces and the tangent sti�ness matrix
of the �nite element. Clearly, the more appropriate the choice of the interpolation functions, the
higher the performance of the �nite element. In that respect, while the approaches for linear spaces
and beams di�er, the performance of any interpolation method is conditioned by the requirements
stated in section 3.1: the ability to represent rigid-body motions andconstant strain states.

3.1 Requirements for convergence of the �nite element metho d

In the �nite element method, kinematic �elds inside an element are interpolated based on their nodal
values. Zienkiewiczet al. [11] state two important properties that are required for the convergence
of the �nite element method.

Criterion 1 (Objectivity) . The displacement function chosen should be such that it doesnot permit
straining of an element to occur when the nodal displacements are caused by a rigid-body motion.

Criterion 2 (Constant strain state). The displacement function has to be of such form that if nodal
displacements are compatible with a constant strain condition such constant strain will in fact be
obtained.

An important remark follows these criteria: (...) Strictly, both criteria need only be satis�ed
as the size of the element tends to zero. However the imposition of these criteria on elements of
�nite size leads to improved accuracy. (...). Failing to satisfy the second criterion leads to locking
phenomena, including the shear locking of shear deformable beams.Next, classical interpolation
schemes for linear spaces and for geometrically exact beams will be evaluated in light of these two
criteria.

3.2 Interpolation in linear spaces

Let the con�guration of a unidimensional but not necessarily straight structural component be
represented by position �eldsx0(� ) 2 R3 and x(� ) 2 R3, � 2 [0; L], in its reference and deformed
con�gurations, reectively. The displacement and strain �elds ared(� ) = x(� ) � x0(� ) and � (� ) =
x0(� ) � x0

0(� ) = d0(� ), respectively.
Consider a �nite element discretization: the structural domain is decomposed intoM �nite

elements of equal length̀ = L=M and interval � 2 [(m � 1)`; m` ] is associated with element
m; m = 1; : : : ; M . Within an element, the interpolated �eld is denoted �x, where notation �(�)
indicates an interpolated quantity. For an element of orderN , the interpolation is based onN + 1

9



nodal values denotedx i = x[(m� 1)` + i`=N ], i = 0; 1; : : : N . The classical approach uses Lagrange's
polynomials, f i (� ), as interpolation functions

�x(� ) =
NX

i =0

f i (� (� )) x i ; (25)

where � 2 [� 1; 1] is a non-dimensional spatial parameter de�ned within each element as � (� ) =
2�=` � 2m + 1, which also implies� (� ) = `(� + 2m � 1)=2. The abscissa of nodei is denoted� i and
� i = `(� i + 2m � 1)=2. Lagrange's polynomials are de�ned by the following conditions:f i (� j ) = 0 if
i 6= j and f i (� j ) = 1 if i = j . For later use, useful properties of Lagrange's polynomials are stated,

NX

i =0

f i (� ) = 1 ; (26a)

NX

i =0

f i (� )[� k+1 (� i ) � � k+1 (� )] = 0 ; (26b)

NX

i =0

df i (� )
d�

� k+1
i = ( k + 1) � k ; (26c)

where� (� ) = a� + b, a; b2 R and integerk < N . With the help of property (26a), eq. (25) can be
recast as

NX

i =0

f i (� )�si (� ) = 0 ; (27)

where �si (� ) = �x(� ) � x i is the relative position of nodei with respect to �x(� ). Hence, the classical
interpolation formula can be interpreted as requiring the vanishing of the weighted average of
the relative positions. The interpolated displacement and strain �elds are expressed as�d(� ) =P N

i =0 f i (� )x i � x0(� ) and �� (� ) =
P N

i =0 f 0
k(� )x i � x0

0(� ), respectively. In �nite element isoparametric
formulation, the same interpolation scheme is used for the reference and deformed con�gurations,
�x0(� ) =

P N
i =0 f i (� )x0i . The interpolated displacement and strain �elds now become

�d(� ) =
NX

i =0

f i (� )(x i � x0i ) =
NX

i =0

f i (� )di ; (28a)

�� (� ) =
NX

i =0

f 0
k(� )(xi � x0i ) =

NX

i =0

f 0
k(� )di ; (28b)

wheredi = x i � x0i is the displacement of nodei . Because the reference and deformed con�gurations
are discretized with the same interpolation scheme, the interpolated displacement and strain �elds
vanish exactly in the reference con�guration.

3.2.1 Order of convergence

The approximation of displacement �eldx(� ) via interpolation (25) leads to an error whenx(� )
is a polynomial of degree higher thanN or a non-polynomial function. The interpolation formula
presents anN + 1 order of convergence under mesh re�nement,i.e., kx(� ) � �x(� )k / `N +1 . For
instance, a two-node element,N = 1 yields an exact interpolation for a linear polynomial but incurs
an order-2 error for all other functions.
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3.2.2 Objectivity

The �nite element interpolation must be objective. According to criterion 1, this implies that
the interpolated strain �eld must remain una�ected by the superposition of rigid-body motions.
Equivalently, this implies that the interpolated displacement �eld mustbe able to represent rigid-
body motions exactly.

Assume that a rigid-body motion brings con�guration a to con�guration b. For the present
problem, a rigid-body motion is obtained by adding an arbitrary displacement vectorr 2 R to the
position or displacement �eld such thatxb(� ) = xa(� ) + r and db(� ) = da(� ) + r , but the strain is
una�ected � b(� ) = � a(� ). Under this rigid-body motion, the nodal position and displacementvectors
becomexb

i = xa
i + r and db

i = da
i + r , respectively. Introducing these expressions into eqs. (28a)

and (28b) and using properties (26b) and (26c) leads to�db(� ) = �da(� ) + r and �� b(� ) = �� a(� ).
Clearly, interpolation scheme (25) is objective because the corresponding strain �eld is una�ected
by rigid-body transformations.

3.2.3 Constant strain state

Criterion 2 implies that the interpolation must be able to represent constant strain states exactly, at
least under mesh re�nement. The constant strain state is characterized by position, displacement,
and strain �elds x(� ) = x0(� ) + �r , d(� ) = �r , and � (� ) = r , respectively, for an arbitrary vector
r 2 R3. The corresponding nodal position and displacement vectors arex i = x0

i + � i r and di =
� i r , respectively. Inserting these expressions into eqs. (28a) and (28b) and using properties (26b)
and (26c) leads to �d(� ) = �r and �� (� ) = r , respectively. Therefore, interpolation (25) is able
to represent constant strain states exactly. Because the constant strain state is associated with
a linear displacement �eld and because the two-node element represents this linear displacement
�eld exactly, the constant strain state is represented exactly. The properties (28a) and (28b)
isoparametric formulation are key to this proof.

3.3 Interpolation in geometrically exact beams

3.3.1 Interpolation of rotation

In the classical approach to beam kinematics, position and rotation�elds are interpolated inde-
pendently. For the position �eld, the traditional discretization based on Lagrange's polynomials
is usually used, see eq. (25). The discretization of the rotation �eldis a far more delicate issue
that has received considerable attention in the literature, see forinstance Cris�eld and Jeleni�c [7]
or Romero [33]; a comprehensive review of the �eld is given by Bauchauand Han [34]. More re-
cently, contributions of di�erential geometry, see e.g. [35], have shown that it is possible to bypass
the global parametrization of rotation, thereby obtaining a framework whose performance is not
limited by the singularities inherent to a three parameter parametrization [36].

Let S(� ) = R(� )R
0
(� ) and S

i
denote the rotation �eld in the deformed con�guration and

its value at node i , respectively. Clearly, direct interpolation of the rotation tensor, �S(� ) =
P N

i =0 f i (� )S
i
, is not a valid approach because a linear combination of orthogonal tensors is not an

orthogonal tensor,i.e., the interpolated quantity is not a valid rotation tensor. Another approach
is to formulate the interpolation in terms of rotation parameterssi = p

p
[S

i
] as �s(� ) =

P N
i =0 f i (� )si ,

where p
p
[�] extract the rotation parameters for a parametrizationp of the rotation tensor, see

Appendix A. The interpolated rotation tensor is then obtained as�S(� ) = R
p
[�s(� )], where R

p
[�]

extracts the orthogonal rotation tensor related to parametrization p. This approach, however, is
not objective, as pointed out by Cris�eld and Jeleni�c [7] and su�ers from singularity issues.
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These issues can be overcome by interpolating relative rotations. Let Z
i

= ST
0
S

i
be the rela-

tive rotation tensor of nodei with respect to node 0 taken as a reference and the corresponding
relative rotation parameter vector is denotedzi = p

p
[Z

i
]. Bauchauet al. [37, 34] have shown that

interpolation scheme �z(� ) =
P N

i =0 f i (� )zi provides an e�cient solution to the problem, leading to a
proper interpolated rotation tensor, �S(� ) = S

0
R

p
[�z(� )]. Because relative rotations within a �nite

element remain small, any parametrization of rotation can be used and singularities do not a�ect
the interpolation process; di�erent choices were presented by these researchers and were shown to
have little impact on the interpolated �eld. It can be shown that this interpolation method is
objective. Nevertheless, the interpolated �eld depends on the choice of the reference node within
each element, although this dependency decreases with mesh re�nement.

Merlini and Morandini [38] used an implicit interpolation scheme that bypasses the need for the
selection of a reference node in each element. In this approach, the relative nodal rotation is de�ned
as P

i
(� ) = �S(� )T S

i
, where �S(� ) is the yet unknown interpolated rotation �eld, and the relative

rotation parameter vectors are denotedp
i
(� ) = p

p
[P

i
(� )]. The interpolation scheme then states

NX

i =0

f i (� )p
i
(� ) = 0 ; (29)

which echoes classical interpolation scheme (27) written in terms ofrelative positions. Equation (29)
de�nes the interpolated rotation �eld in an implicit manner and can be used with any vectorial
parametrization of rotation. A numerical solution procedure is given in Appendix B.

To better understand the scheme, the derivation of a quasi-explicit expression is desirable.
The relative nodal rotation vector is de�ned by a composition of rotation operation, R

p
[p

i
(� )] =

(R
p
[�s(� )])T R

p
[si ]. For all vectorial parametrizations of rotation, this composition operation can be

expressed by the equivalent form [31]

�̂ i pi
(� ) = � i �� (si =�" � �s="i + ~si �s=2) : (30)

Rotation parameter vector �s is associated with two scalars, �� = (2 sin ��= 2)=k�sk and �" =
(2 tan ��= 2)=k�sk, where �� is the rotation angle as de�ned by Euler's theorem on rotation. Sim-
ilar relationships associate scalars ^� i and "̂ i with p

i
and scalars� i and " i with si . Introducing

eq. (30) into interpolation scheme (29) then yields

�" �s(� ) =

"
NX

i =0

f i (� )
� i

�̂ i
(

1
" i

+
1
2

~si )

#� 1  
NX

i =0

f i (� )
� i

�̂ i
si

!

: (31)

This expression provides the interpolated rotation �eld, �s, but it is not an explicit expression because
scalar functions �" and �̂ i are functions of �s. Although the implicit interpolation scheme uses the
classical interpolation functions of the �nite element method, quasi-explicit expression (31) indicates
that the interpolation procedure is far more complex than its classical counterpart, see eq. (25). In
practice, a �ne enough mesh implies that the relative rotations withinthe elements are small, so
that �" � 1 and �̂ i � 1.

In some cases, explicit expressions of the interpolation �eld resulting from scheme (29) can
be obtained. For a two-node element, it is found easily that the interpolated �eld is given by
�S(� ) = S

0
R

p
[(1 + � )p

01
=2], wherep

01
= p

p
[ST

0
S

1
] is the relative rotation of node 1 with respect to

node 0. For this two-node case, the interpolated rotation �eld is identical to that obtained with
the interpolation based on a reference node discussed above. When the Cartesian rotation vector is
used as a parametrization, the scheme leads to an interpolated curvature that is constant over the
element and defaults to the formula proposed by Cris�eld and Jeleni�c et al. [7] or equivalently, to
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the spherical linear interpolation, abbreviated as \Slerp," proposed by Shoemake [39] for computer
animation applications in 1985. If the Euler-Rodrigues parametrization [31] is used, implicit inter-
polation scheme (29) can be recast easily in terms of unit quaternions, because the Euler-Rodrigues
parametrization represents, in fact, the vector part of a unit quaternion. An explicit expression
of the interpolation scheme for the Euler-Rodrigues (ER) parametrization, that is obtaining an
interpolated parameter �eld �sER (� ) of �S(� ) from nodal parameterssER;i of S

i
, is

�sER (� ) =
2

r � P N
i =0 f i (� )

q
4 � sT

ER;i sER;i

� 2
+ jj

P N
i =0 f i (� ) sER;i jj 2

NX

i =0

f i (� ) sER;i (32)

In terms of quaternions, the interpolation takes the simple expression �̂s(� ) =P N
i =0 f i (� )ŝi =k

P N
i =0 f i (� )ŝi k, where ŝi are the nodal unit quaternions and �̂s(� ) the interpo-

lated unit quaternion �eld. The scheme, interpreted easily as the \normalized weighted sum of
the nodal unit quaternions," was used by a number of authors, see, for instance, Bauchau and
Han [34].

3.3.2 The motion approach

The interpolation schemes for rotation discussed in the previous section can be extended to the
interpolation of motion easily. For simplicity, the matrix representation of the motion de�ned
by eq. (7) is used in the following development. LetG(� ) = H (� )G

0
(� ) = M [S(� ); x(� )] and

G
i

= M [S
i
; x i ] denote the motion �eld in the deformed con�guration and its value at node i ,

respectively. The relative nodal motion is de�ned asV
i
(� ) = �G(� )� 1G

i
, where �G(� ) is the yet

unknown interpolated motion �eld and the relative motion parametervector is denotedP i (� ) =
P

p
[V

i
(� )], whereP

p
[�] extracts the motion parameters for parametrizationp, see Appendix A. The

implicit interpolation scheme now writes

NX

i =0

f i (� )P i (� ) = 0 : (33)

Here again, the interpolation scheme is implicit and can be used with anyvectorial parametrization
of motion [40]. The parametrization of motion at nodei can be expressed explicitly as

P i (� ) =

"
T � T

p;i
(� ) �ST (� ) (x i � �x(� ))

p
i
(� )

#

=

"
T � 1

p;i
(� )ST

i
(� ) (x i � �x(� ))
p

i
(� )

#

; (34)

whereT
p
[p] is the tangent operator for rotation parameter vectorp, see Appendix A, andT

p;i
(� ) =

T
p
[p

i
(� )]. Clearly, rotation interpolation scheme (29) is a subset of the present motion interpolation

scheme and hence, the discussion focuses here on the interpolation of the position �eld, which can
be expressed explicitly as

NX

i =0

f i (� )T � T
p;i

(� ) �ST (� ) (x i � �x(� )) = 0 (35a)

, �x(� ) =

"
NX

i =0

f i (� )T � T
p;i

(� ) �ST (� )

#� 1  
NX

i =0

f i (� )T � T
p;i

(� ) �ST (� )x i

!

: (35b)

As expected from the motion formalism, which kinematically couples the position �eld and the
rotation �eld, the interpolated position �eld depends on the rotation �eld. Although interpolation
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scheme (33) is written in terms of Lagrange's polynomials, the position �eld is interpolated by means
of far more complex, con�guration dependent, nonlinear interpolation functions, corresponding to
a weighted average of the nodal positions normalized by the sum of the weighting factors. Note the
similarity between the rotation and position �eld interpolations, eqs.(31) and (35b), respectively.
The coupling between displacement and rotation enters position interpolation scheme (35a) through
tangent operatorT

p;i
(� ) evaluated for the relative motion at nodei . If this coupling is eliminated

by setting T
p;i

(� ) = I , eq. (35a) becomes
P N

i =0 f i (� )ST (� )(x i � �x(� )) = 0 and hence, �x(� ) =
P N

i =0 f i (� )x i , which is the classical position interpolation scheme, see eq. (25). The values of the
interpolated position �eld at a given node is exactly the nodal positionat that node. Indeed, at
a given nodei , the Lagrange polynomials achieving unity at the other node vanish,i.e. f j (� i ) =
0; j 6= i while f i (� i ) = 1, and the interpolation formula in Eq. (35a) reduces to �x(� i ) = x i . The
interpolation formula interpolates thus exactly the nodal positionsx i , and the coupling with the
rotation �eld leads to (potentially) higher-order polynomial contributions which are interpreted as
"bubble modes."

Using the composition of motion expression, a quasi-explicit expression that mirrors eq. (31)
for the motion parameters of the interpolated motion can be obtained. If the Euler-Rodrigues
motion parametrization [31] is used, motion interpolation scheme (33) can be recast easily in
terms of dual quaternions, because the Euler-Rodrigues parametrization represents, in fact, the
vector part of a dual quaternion. An explicit expression of the interpolation scheme is��s(� ) =P N

i =0 f i (� )�si =k
P N

i =0 f i (� )�si k, where �si are the nodal dual quaternions and��s the interpolated dual
quaternion.

3.3.3 Objectivity

The attention now turns to the objectivity of the interpolation scheme. The beam undergoes a
rigid-body motion that brings it from con�guration a to con�guration b, see section 2.2. According
to criterion 1, objectivity requires the invariance of the interpolated �eld under rigid-body motions.
The position of nodei after the transformation is xb

i = RRxa
i + xR , the rotation at node i is

Sb
i

= RRSa
i

and the motion at nodei is Gb
i

= H RGa
i
, whereH R = M (RR ; xR ).

For the classical approach, the interpolation scheme (25) then implies �xs(� ) =
P N

k=0 f i (� )xs
i =

RL �xr (� ) + xL , which matches transformation (11). For the rotation �eld, equation (29) now yields
the interpolated rotation �eld as �Ss(� ) = RL Sr (� ), which matches transformation (11). This result
stems from the fact that the interpolation of rotation is based on relative rotations only, which
remain una�ected by rigid-body motions. Because it represents a rigid-body exactly, the classical
interpolation scheme is objective.

Because interpolation scheme (33) for the motion approach is based on relative motion only, it
remains invariant under the superposition of rigid-body motions, and hence, is objective.

3.3.4 Convergence order for arbitrary con�gurations

The interpolation scheme for linear spaces in eq. (25) is exact when the displacement �eld is a
polynomial of degreeN or less. For more general displacement �elds, the interpolation scheme
incurs an errorkx(� ) � �x(� )k / `N +1 : as the element size,̀, decreases under mesh re�nement, the
error decreases by a factor̀N +1 . For the two-node element,N = 1, an order-2 error is expected.

The same level of error is incurred by rotation interpolation scheme(29). Indeed, the relative
rotation parameters,p

i
(� ), are interpolated with Lagrange's polynomials and hence, this stepincurs

an error kp(� ) � �p(� )k / `N +1 . The same observation applies to relative motion parametersP i (� ).
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3.3.5 Rotation interpolation for constant curvature state s

In preparation of the study of constant strain states, considera beam undergoing a constant cur-
vature deformation. For simplicity, it is assumed that the curvature of the beam in the reference
con�guration is constant, i.e., k0 is independent of� . For this constant curvature state, the elastic
curvature, { , is independent of� and the integration of the di�erential equation (16) yields the
rotation �eld as

S(� ) = S(0) exp(� ~k); (36)

whereS(0) is an initial condition at � = 0. Note that the exponential appearing in this expression is
a natural consequence of the solution of the di�erential equation; it does not result from a particular
choice of parametrization of rotation.

Equation (36) now implies that the rotation at nodei is S
i

= S(0) exp(� i
~k) and the relative

rotation becomesP
i
(� ) = �S(� )T S

i
= exp[( � i � � )~k] = exp[`(� i � � )~k=2]. Interpolation scheme (29)

now implies
NX

i =0

f i (� )p
p

�
exp(

`
2

(� i � � )~k)
�

= 0: (37)

Any vectorial parametrization of rotation [41] can be expressed interms of the rotation axis and of
a scalar function of the rotation angle,gp, which, in the present case, reads

p
p

�
exp(

`
2

(� i � � )~k)
�

= gp

�
`kkk

2
(� i � � )

�
k

kkk
(38)

Because the unit vector about which the rotation takes place,k=kkk, is constant, interpolation
scheme (29) reduces to a scalar interpolation formula

P N
i =0 f i (� )gp [`kkk(� i � � )=2] = 0. Given the

properties of Lagrange's polynomials, this interpolation formula is expected to incur an order-(N +1)
error because functiongp is, in general, a nonlinear function of its argument.

More precise conclusions can be reached for speci�c parametrizations of rotation. Consider, for
instance, the Cartesian rotation vector [31], which corresponds to the exp-log parametrization, for
which function gexp is simply a linear function of is argument,gexp [`kkk(� i � � )=2] = `kkk(� i � � )=2.
In this case, the scalar interpolation formula is satis�ed exactly8N � 1, i.e., for any �nite element
with two or more nodes. Clearly, interpolation scheme (29) used in conjunction with the Cartesian
rotation vector provides an exact representation of constant curvature states for �nite elements of
�nite size.

Interpolation scheme (29) can be used in conjunction with any vectorial parametrization of
rotation, such as Cayley parameters, Euler-Rodrigues parameters, Wiener-Milenkovi�c (CRV) pa-
rameters, among many others [31, 41]. Consider for instance the CRV parameters for which
gCRV [`kkk(� i � � )=2] = 4 tan[`kkk(� i � � )=8]: function gCRV is an odd function of its argument.
Therefore, odd and even Lagrange's polynomials of orderN and N + 1, respectively, both lead to
an order-(N + 2) error. In particular, for two-node elements,N = 1, an order-3 error is incurred
for the representation of constant curvature states, and forthree-node elements,N = 2, the same
order is achieved. For four-node elements,N = 3, an order-5 error is obtained.

In summary, interpolation scheme (29) for the interpolation of constant curvature states is
higher, namely at leastN + 1, and N + 2 for odd N , than for arbitrary con�gurations, for which
the level of accuracy is strictly of orderN + 1. Finally, it should be mentioned that the error is a
function of the magnitude of the curvature,kkk, and hence, the error decreases with decreasing the
magnitude of the curvature.

3.3.6 Constant strain states in the classical approach

Consider now a beam undergoing a constant strain state. For simplicity, it is assumed that the
beam's reference line is helicoidal,i.e., both k0 and c0 are constant over the beam's span, which
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corresponds to a beam with a helicoidal reference curveC0. For constant strain states, the curvature,
k, and strain vectors,c, remain constant and integrating eq. (18) yields the position �eld as

x(� ) = x(0) + S(0)TT
exp

(� ~k)�c ; (39)

wherex(0) is an initial condition at � = 0 and TT
exp

is the tangent operator associated with the exp
map. This operator is a natural consequence of the solution of thedi�erential equation; it is not
the result from a particular choice of parametrization of rotation.Because tangent operatorT

exp
is

a nonlinear function of its argument, the position �eld depends on the rotation �eld in a nonlinear
manner. Equation (39) also describes a helicoidal reference curve.

The position of nodei as obtained from eq. (39) isx i = x(0)+ S(0)TT
exp

(� i
~k)� i c and the classical

interpolation scheme (25) now implies �x(� ) = x(0) + S(0)
P N

i =0 f i (� )TT
exp

(� i
~k)� i c, which matches

the exact solution in eq. (39) if

NX

i =0

f i (� )TT
exp

(� i
~k)� i c = TT

exp
(� ~k)�c : (40)

In general, this condition is not satis�ed: due the nonlinearity of thetangent operator, the weighted
sum of � i TT

exp
(� i

~k) is not equal to � TT
exp

(� ~k). Two notable exceptions are whenk = 0 or ~kc = 0,
which imply that the beam is straight in its deformed con�guration. Consequently, classical inter-
polation schemes for the position �eld cannot represent constantstrain states exactly for elements
of �nite size.

Performing a series expansion of the tangent operator, condition(40) becomes
"

1X

j =0

 
NX

i =0

f i (� )
� � � i

`

� j +1
�

� �
`

� j +1
� !

` j +1 ~kj

(j + 1)!

#

c = 0: (41)

Property (26b) of Lagrange's polynomials then shows that the �rst N terms of this series vanish,
and hence, the interpolation (25) incurs an order-(N +1) error for constant strain states, as expected
for Lagrangian interpolation. These developments show that meshre�nement and higher-degree
Lagrange polynomials reduce the interpolation error on the position�eld when representing constant
strain states and hence, the classical interpolation scheme satis�es criterion 2.

3.3.7 Constant strain states in the motion approach

Assuming again the beam's reference line to be helicoidal,i.e., k0 and c0, and henceE 0, are constant
over the beam's span, the exact solution for constant strain states is found by integrating eq. (21)
for a constant ~E as

G(� ) = G(0) exp(� ~E); (42)

whereG(0) is the initial condition at � = 0. Because the motion formalism treats the displacement
and rotation �elds as a unit, this solution combines eqs. (36) and (39). The treatment of the rotation
�eld in section 3.3.5 is a subset of the present development. The treatment of the displacement,
however, di�ers from that discussed in section 3.3.6. Indeed, the interpolated position �eld, see
eq. (35b), becomes

�x(� ) = x(0) +

"
NX

i =0

f i (� )T � T
p;i

�ST (� )

#� 1 "
NX

i =0

f i (� )T � T
p;i

�ST (� )S(0)TT
exp

(� i
~k)� i

#

c (43)
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This expression matches the exact solution (39) if the following condition is satis�ed,

"
NX

i =0

f i (� )T � T
p;i

�ST (� )S(0)

#� 1 "
NX

i =0

f i (� )T � T
p;i

�ST (� )S(0)TT
exp

(� i
~k)� i

#

c = TT
exp

(� ~k)�c (44)

This condition is identical to that found for the classical interpolation scheme, see eq. (40), if the
e�ect of the relative rotations is ignored,i.e., by setting T

p;i
to be the identity matrix.

Detailed analytical developments based on the properties of the tangent operators could be used
to evaluate analytically the order of convergence of the position �eld under mesh re�nement. A
numerical investigation leads to the following conclusions, which are identical to those obtained for
the interpolation of the rotation �eld. If the Cartesian motion vector, or exp-log parametrization,
is used to parametrize the motion, the scheme provides an exact representation of a constant strain
states for elements of �nite size. For other parametrizations of motion, the order of convergence
for constant strain states is at least 3 andN + 2 for odd Lagrange polynomials. In particular, for
two-node elements,N = 1, an order-3 error is observed for the representation of constant strain
states, which is one order higher than achieved with the uncoupled interpolation scheme.

In summary, interpolation schemes based on motion represent theposition �eld associated with
constant strain states more accurately than those interpolatingthe position and rotation �elds inde-
pendently. For the parametrization based on the Cartesian motionvector, an exact representation
is obtained. For other parametrization, the interpolation based onthe motion enjoys better con-
vergence rates than its counterpart based on the separate treatment of position and rotation �elds.
In view of the basic requirement of the �nite element method, criterion 2, the interpolation based
on motion is thus superior.

3.4 Numerical example

The observations made in the previous sections are here illustratedwith a numerical example. Both
arbitrary and constant strain con�gurations are considered. The length of the beam is normalized
to unity.

The con�guration used by Bauchau and Han [34] is used here for thearbitrary con�guration.
The position �eld is xT (� ) = [sin 2� ); cos 2� � 1; 0:5� + sin 4� ] and the rotation �eld is expressed in
terms of a unit quaternion �eld asêT (� ) = [cos �; sin� sin� cos ; sin� sin� sin ; sin� cos� ], where
� (� ) = 0 :8 sin� , � (� ) = 2 sin 0:8� + 0:6 cos� , and  (� ) = cos � � 1. For the constant strain
con�guration, the position and rotation �elds are given by eq. (39)and eq. (36), respectively, with
kT = [0:7302; � 0:3439; 0:5841],cT = [0:6171; 0:9502; 0:0344],S(0) = I , and x(0) = 0 .

The exact and interpolated position �elds are computed in each �niteelement at four Gauss
points denotedsk . Two-, three- and four-node elements are considered. The relative error on the
position �eld is measured as

e =
1

NGp

NGpX

k=0

kx(sk) � �x(sk)k
kx(� k)k

; (45)

where NGp = 4Ne is the total number of Gauss points andNe the number of elements. For the
rotation �eld, the error is computed as

e =
1

NGp

NGpX

k=0

k �RT (sk)R(sk) � I k: (46)

Figure 2 shows the error in the interpolated position �eld de�ned by eq. (45) for an increasing
number of elements when using interpolation scheme (25). This scheme is the classical interpolation
scheme used in the �nite element method applied here to an arbitrarystrain distribution. The �gure
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shows that for elements featuring two, three, or four nodes, the convergence rate is 2, 3, or 4, as
expected. Figure 3 shows the corresponding results for a constant strain distribution; convergence
rates are identical for both arbitrary and constant strain distributions.

Figure 2: Error in interpolated position �eld versus number of elements for interpolation
scheme (25); arbitrary strain distribution.

Figure 3: Error in interpolated position �eld versus number of elements for interpolation
scheme (25); constant strain distribution.

Next, the attention turns to the interpolation of the rotation �eld using interpolation
scheme (29). Figure 4 shows the interpolation error de�ned by eq.(46) for an increasing num-
ber of elements when dealing with an arbitrary curvature distribution. The �gure shows that for
elements featuring two, three, or four nodes, the convergencerate is 2, 3, or 4, as expected from
Lagrangian interpolation. The analysis presented earlier predicts identical convergence rates for
all vectorial parametrizations of rotation. The results presented in �g. 4 con�rm this �nding by
showing that the convergence rates for the Cartesian rotation vector (+), the Euler-Rodrigues pa-
rameters (� ), the Cayley-Rodrigues parameters (?), and the Wiener-Milenkovi�c parameters (2 ) are
indistinguishable.

Figure 5 shows the corresponding results when dealing with a constant curvature distribution.
As expected from the analysis in section 3.3.5, for any number of nodes, the error vanishes when
using the Cartesian rotation vector to parameterize rotation. For the other parametrizations, two-
and three-node elements display a convergence rate of three, whereas a convergence rate of �ve is
observed for the four-node elements, as expected.

Finally, �gs. 6 and 7 show the error in (45) obtained when using motioninterpolation
scheme (33). In particular, the interpolated position �eld is obtained using eq. (35b). The observa-
tions about the convergence order are identical to the ones madewhen examining the interpolation
of the rotation �eld. Comparing �g. 3, obtained with the classical interpolation scheme (25), with
�g. 7, obtained with motion interpolation scheme (33), reveals thatsmaller error are incurred with
the latter interpolation scheme.
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Figure 4: Error in interpolated rotation �eld versus number of elements for interpolation
scheme (29); arbitrary curvature distribution. Cartesian rotation vector (+), Euler-Rodrigues pa-
rameters (� ), Cayley-Rodrigues parameters (?), Wiener-Milenkovi�c parameters (2 ).

Figure 5: Error in interpolated rotation �eld versus number of elements for interpolation
scheme (29); constant curvature distribution. Cartesian rotation vector (+), Euler-Rodrigues pa-
rameters (� ), Cayley-Rodrigues parameters (?), Wiener-Milenkovi�c parameters (2 )

This numerical investigation con�rms the analysis presented in the previous sections. Using the
motion interpolation approach provides higher accuracy and higherconvergence rates for constant
strain con�gurations.

3.5 Explicit interpolation for small curvatures

Because the interpolation scheme discussed in this paper is implicit, it isnot understood as easily
as the classical �nite element interpolation schemes. In particular,the interpolated position �eld
de�ned by eq. (35b) may seem enigmatic. If the relative rotations remain small within an element,
the �nite element curvatures, i.e., the curvatures of the reference curve multiplied by the length of
the element, are small. Then, a more explicit expression for the interpolated position �eld can be
easily derived. Indeed, small relative nodal rotations can be approximated as P

i
(� ) � I + ~� i (� ),

which implies p
p
[P

i
(� )] = � i (� ) and the interpolation of rotation now states

P N
i =0 f i (� )� i (� ) = 0 .

Furthermore, for any parametrization of rotation, the tangentoperator for can be approximated as
T � T

p;i
= I � ~� i (� )=2, which leads to

P N
i =0 f i (� )T � T

p;i
(� ) = I � 1=2

P N
i =0 f i (� )~� i (� ) = I , where the second

equality follows from the interpolation of the rotation �eld. Introdu cing these approximations into
eq. (35b) leads to

�x(� ) =
NX

i =0

f i (� )x i �
1
2

NX

i =0

f i (� )~� i (� )x i : (47)

where �
i
(� ) = �S(� )� i (� ). The �rst term reproduces the classical interpolation scheme and the

second stems from the uni�ed treatment of the position and rotation �elds inherent to the proposed
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Figure 6: Error in interpolated motion �eld versus number of elements for interpolation scheme (33);
arbitrary strain distribution. Cartesian rotation vector (+), Eule r-Rodrigues parameters (� ),
Cayley-Rodrigues parameters (?), Wiener-Milenkovi�c parameters (2 ).

Figure 7: Error in interpolated motion �eld versus number of elements for interpolation scheme (33);
constant strain distribution. Cartesian rotation vector (+), Euler-Rodrigues parameters (� ), Cayley-
Rodrigues parameters (?), Wiener-Milenkovi�c parameters (2 ).

interpolation strategy.
The additional term depends on the spatially dependent relative rotations, potentially leading

to higher-order polynomial contributions. Because the relative rotation vanishes at the nodes,
i.e. �

i
(� i ) = � i (� i ) = 0 , this additional term vanishes at the nodes, leaving the contribution of the

classical interpolation only: this additional contribution involves \bubble modes" that vanish at the
nodes. Using arguments similar to those in the previous section, it can be shown that interpolation
scheme (47) is objective and able to represent constant strain states exactly.

To further illustrate the features of the interpolation scheme, consider a two-node beam element
undergoing small rotations. The rotation tensors at node 0 and 1 are S

0
= I + ~ 0 and S

1
=

I + ~ 1, respectively, and the interpolated rotation �eld becomes�S(� ) = I + ~ (� ), where  (� ) =
(1 � � ) 0=2 + (1 + � ) 1=2. The small relative rotations are now� 0(� ) = (1 + � )(  

0
�  

1
)=2 and

� 1(� ) = ( � � 1)( 
0

�  
1
)=2 and the interpolated position �eld becomes

�x(� ) =
1 � �

2
x0 +

1 + �
2

x1 +
1
2

1 � � 2

4
(~x01 � ~x00)

�
 

1
�  

0

�
: (48)

where x0i is the position of nodei in the reference con�guration. As expected, the last term is
a quadratic bubble mode and describes a three-dimensional contribution to the interpolation: it
vanishes for a straight beam ( 

1
=  

0
+ � (x01 � x00), for some� 2 R) and is orthogonal to line

x01 � x00 joining the two nodes of the element in the reference con�guration.
Interpolation scheme (48) can be easily implemented in existing linear �nite element codes.

Sonneville and Br•uls [42] have shown that this interpolation scheme,in conjunction with a full
Gaussian integration strategy, yields the same sti�ness matrix forthe beam element as the classical
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interpolation scheme, using the �rst two terms of eq. (48) only, in conjunction with a reduced
integration strategy. Because the latter strategy is known to alleviate shear locking, it appears
that interpolation scheme (48) achieves the same goal without resorting to the numerical artifact
of reduced integration.

3.6 Interpolation of the deformed con�guration or change in con�gu-
ration

In the isoparametric �nite element formulation, the same interpolation scheme is used for the
reference and deformed con�gurations, or equivalently, for thereference con�guration and the dis-
placement �eld, namely the change of con�guration. The equivalence of these two approaches stems
from the fact that the interpolation scheme is applied to linear spaces. When dealing with the rota-
tion and motion spaces, application of the same interpolation schemeto the deformed con�guration
or to the change of con�guration yields di�erent results.

When interpolation scheme (29) was introduced, it was applied to thedeformed con�guration,
i.e. S(� ) = R(� )R

0
(� ). Consider the same scheme but now applied to the change of con�guration

from the reference to the deformed con�guration,i.e., applied to rotation tensor R(� ) rather than
to rotation tensor S(� ),

NX

i =0

f i (� )p
p

h
�RT (� )R

i

i
= 0: (49)

Because it depends on relative rotations only, the scheme is objective. The exact solution of rotation
�eld R(� ) for constant curvature states is obtained from eq. (36) as�R(� ) = S(0) exp(� ~k) �RT

0
(� )

and at the nodes,R
i

= S(0) exp(� i
~k)RT

i 0
. Introducing these results into eq. (49) yields

NX

i =0

f i (� )p
p

h
�R

0
(� ) exp[(� i � � )~k]RT

i 0

i
= 0: (50)

An analysis of the convergence rate for constant curvature states similar to that presented in
section 3.3.5 can be performed and leads to the following conclusions.If the beam is initially
straight, i.e. k0 = 0, the discussion is identical to section 3.3.5. In this case, the initial rotation
�eld �R

0
(� ) = R

i 0
; 8i is simply a rigid rotation of the interpolated �eld. However, if the beam

is initially curved, the initial nodal rotations di�er from each other and a�ect the interpolated
rotation �eld. The analysis shows that interpolation scheme (49) does not enjoy the superior order
of convergence for the constant curvature state. Furthermore, for arbitrary con�gurations, it leads
to a higher error than scheme (29) that interpolates deformed con�gurations.

Regarding the motion, when interpolation scheme (33) is applied to the change of motion from
the reference to the deformed con�guration,i.e., to motion tensor H (� ) = G(� )G� 1

0
(� ), the follow-

ing scheme results
NX

i =0

f i (� )p
p

h
�H � 1(� )H

i

i
= 0: (51)

Because the scheme is based on relative motions only, it is objective.The exact solution of the mo-
tion �eld H (� ) for constant strain states is obtained from eq. (42) as�H (� ) = G(0) exp(� ~E) �G� 1

0
(� )

and at the nodes, �H
i

= G(0) exp(� i
~E)G� 1

i 0
. Introducing these results into eq. (51) yields

NX

i =0

f i (� )p
p

h
�G

0
(� ) exp[(� i � � ) ~E]G� 1

i 0

i
= 0: (52)
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An analysis of the convergence rate for constant strain states similar to that presented in sec-
tion 3.3.7 can be performed and shows that interpolation scheme (51) does not enjoy the superior
order of convergence for constant strain states and leads to a higher error than scheme (33) that
interpolates deformed con�gurations.

In summary, due to the nonlinearity of the interpolation methods for rotation and motion, inter-
polation of the deformed con�guration and of the change of con�guration are not equivalent, even
for isoparametric �nite elements. The interpolation schemes basedon the deformed con�guration
feature convergence rate and accuracy superior to those obtained when the identical interpolation
scheme is applied to the change of con�guration.

4 Conclusions

This paper has focused on the interpolation of the kinematic �elds describing the con�guration of
geometrically exact beams. Two approaches were investigated: the classical approach that treats
the displacement and rotation �elds separately and the motion approach that treats those two �elds
as a unit. The latter approach is found to be consistent with the kinematic description of beams
because it couples the position and rotation �elds naturally. Furthermore, the motion approach
handles the superposition of rigid-body modes easily, leading naturally to objective sectional strain
measures.

Two �nite element interpolation strategies were presented and contrasted. The �rst interpolates
the displacement and rotation �elds separately, whereas the second interpolates both �elds as a
unit, in a manner consistent with the motion approach. The performance of the two approaches
was evaluated in light of the fundamental requirements for the convergence of the �nite element
method: the ability to represent rigid-body motion and constant strain states. It was shown that
the traditional uncoupled interpolation scheme for the position �eldapproximates that based on
the motion by neglecting the e�ect of the rotation �eld on the position �eld. Furthermore, it was
shown that the coupling induced by the interpolation of motion yields superior convergence rates
for the representation of constant strain states. This property is known to lead to �nite elements
that are less prone to the shear locking phenomenon.

To emphasize the fact that these issues stem from the kinematic representation, this paper was
devoted entirely to interpolation techniques for position and rotation �elds. In turns, interpolation
schemes determine the interpolated strain measures, elastic forces, and tangent sti�ness matrix of
the �nite element. Future work will present a quantitative study of the behavior of geometrically
exact beam �nite elements based on the motion approach. The superior properties of the inter-
polation schemes presented in this paper are expected to translate into high-performance beam
elements.

A Parametrization of rotation and motion

This appendix briey reviews key aspects of the parametrization ofrotation and motion; a com-
prehensive review of the topic can be found in textbooks such as G�eradin and Cardona [43] or
Bauchau [31]. A vectorial parametrizationp of a rotation is a vector of three independent rotation
parameters, denotedp, such that the rotation tensor,R, can be expressed as

R = R
p
(p) () p = p

p
(R); (53)

and the inverse operation extracts the rotation parameter vector from a given rotation tensor.
Stuelpnagel [36] has shown that singularities will appear for any possible choice of the parametriza-
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tion. The tangent operator,T
p
(p), is de�ned by the following relationship,

d = T
p
(p)d(p) (54)

where ~d = RT dR de�nes the di�erential rotation vector.
Similarly, a parametrization of a motion consists in a choice of six independent parameters,P,

such that the motion tensor can be expressed as

H = H
p
(P) () P = P

p
(H ); (55)

and the inverse operation extracts the motion parameter vectorfrom a given motion tensor.
For sake of illustration, the Cartesian rotation and motion vector parametrizations are given

explicitly. As proposed in [44], the following notations are introduced

� (p) =
sin(kpk)

kpk
; � (p) = 2

1 � cos(kpk)

kpk2
; (56)

where p 2 R3. Note that � (0) = � (0) = 1. The rotation tensor is obtained from the rotation
parameters through a matrix exponential of skew-symmetric matrices, which has a compact form
given by Rodrigues' formula,

R = R
exp

(p) = exp(~p) =
1X

i =0

~pi

i !
= I

3� 3
+ � (p)~p +

� (p)

2
~p2; (57)

and the inverse map, giving the Cartesian rotation vectorp, writes

~p = p
exp

(R) =
1X

i =1

(� 1)i +1
(R � I

3� 3
) i

i
=

�
2 sin�

(R � RT ); (58)

with cos� = (tr( R) � 1)=2, j� j < � . If R = I
3� 3

, � = 0 and ~p = 0
3� 3

.
The related tangent operator is given by

T = T
exp

(p) =
1X

i =0

(� 1)i ~pi

(i + 1)!
= I

3� 3
�

� (p)

2
~p +

1 � � (p)

kpk2
~p2: (59)

The Cartesian motion vector parametrization is characterized by

H = H
exp

(P) = exp( ~P) =
1X

i =0

~P i

i !
=

�
R

p
(p) TT

exp
(p)u

01� 3 1

�
; (60)

whereP = f uT ; pT g and the inverse map reads

~P = P
exp

(H ) =
1X

i =1

(� 1)i +1
(H � I

4� 4
) i

i
=

�
~p T � T

exp
(p)x

01� 3 0

�
; (61)

where ~p = P
exp

(R) and the 6� dimensional Cartesian motion vector is introduced as

P =

"
T � T

exp
(p)x
p

#

: (62)
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B Numerical solution of the implicit interpolation formula
for the rotation �eld

In this section, a simple Newton-Raphson procedure is given for solving numerically the implicit
interpolation formula in eq. (29). The solution is obtained as an interpolated rotation �eld �S(� ) at
a given � � .

1. Initialize �S(� � ) = �S
0
.

2. Compute the relative rotationsp
i
(� � ) = p[ �ST (� � )S

i
].

3. Evaluate the interpolation formular =
P N

i =0 f i (� � )p
i
(� � ).

4. Checkkrk

� if krk < tolerance: stop.

� if kr k � tolerance: correct �S(� � ) as �S(� � ) = �S(� � )R[�] where

� =
hP N

i =0 f i (� � )T � 1[� p
i
(� � )]

i � 1
r and go to step 2.
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