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Abstract

This paper focuses on the interpolation of the kinematic elds describing the con guration
of geometrically exact beams, namely the position and rotabn elds. Two kinematic repre-
sentations are investigated: the classical approach thatreats the displacement and rotation
elds separately and the motion approach that treats those wo elds as a unit. The latter
approach is found to be more consistent with the kinematics dscription of beams. Then, two
nite element interpolation strategies are presented and ontrasted. The rst interpolates the
displacement and rotation elds separately, whereas the seond interpolates both elds as a
unit, in a manner consistent with the motion approach. The peaformance of both strategies
is evaluated in light of the fundamental requirements for the convergence of the nite element
method: the ability to represent rigid-body motion and constant strain states. It is shown that
the traditional uncoupled interpolation scheme for the postion eld approximates that based
on the motion approach and that the coupling induced by the irterpolation of motion yields
superior convergence rates for the representation of corestt strain states. This property is
known to lead to nite elements that are less prone to the lockng phenomenon.

1 Introduction

Many structural components of mechanical systems can be mdéebk accurately as exible beams.
When these components undergo nite motions, a non-linear appoh is needed. The geometrically
exact beam theory [1, 2] is often selected because it uses an exasematic description of the
structure involving nite displacement and rotation elds, as expeted for Cosserat solids. Because
nite rotations are present, the con guration space is nonlinear @d non-commutative.

The mechanical properties of the system are represented by east energy function that depends
on sectional strain measures. Application of the fundamental priiples of mechanics then yields the
six nonlinear, ordinary di erential equations of equilibrium. Typically, the nite element method
is used to nd an approximate numerical solution to these nonlineargeiations and because it is
di cult to deal with nonlinear and non-commutative con guration sp aces, numerous approaches
to the problem have been proposed. The earliest researchersénaged the classical interpolation
tools of the nite element methods, see Simo and Vu-Quoc [3], Cardoand CGeradin [4], Atilgan et
al., [5] or Ibrahimbegovt [6]. While all these approaches use identicakctional strain measures to
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de ne the beam's strain energy, the numerical processes usedotatain the solution di er. Notable
di erences are found in the parametrization and interpolation of te rotation eld.

Several issues with these early techniques have been documeimettie literature. Cris eld and
Jelenc [7, 8] were the rst to point out that the strain measuresused in the formulation should be
objective, i.e., should be invariant under the addition of a rigid-body motion to the on guration
of the system. They showed that several commonly used discretibn schemes for rotation elds
do not satisfy these requirements: interpolated strain measur&® not remain invariant under
a superimposed rigid-body motion. Typically, the use of mesh and loelep size re nements
alleviate these problems. Romero and Armero [9] developed interpiada schemes that guarantee
objectivity and the same goal was achieved by Betsch and SteinnmafiL0] who used a redundant
set of generalized coordinates to represent the con guration @fie system. Another recurring
issue of these early schemes is the locking phenomenon. The requar for the convergence of
the nite element method is that the interpolated eld be able to capure constant strain states
accurately, see Zienkiewicz [11]. Unfortunately, when using the patymial interpolation functions
found in nite element textbooks for interpolating beam problems, itis not possible to represent
constant or vanishing shear strain distributions, for instance, sellting in the well-known shear
locking phenomenon. Typically, reduced integration, higher ordenterpolation schemes, or both,
are implemented to mitigate this problem.

The de ciencies of these schemes limit their performance and indieathat fundamental un-
derlying concepts are not treated properly. The goal of this papés to present a fresh look at
beam formulation. The choice of an interpolation strategy is rooteih the kinematic description of
the beam. In the classical approacte.g.[3, 4, 12, 9, 10], the con guration space is considered as
SO(3) RS3: independent rotation, SO(3), and displacement,R3, elds are used. In contrast, the
present paper advocates the motion-based approach, in whichetbon guration space is selected as
SE(3) = SO(3) n R 3: the rotation and displacement elds are treated as a single, coupleentity,
called a \frame eld" or a \motion eld.” Although this framework is use d widely in the robotic
community, see Angeles [13], McCarthy [14], Murragt al. [15] or Selig [16], it has been largely
ignored by researchers modeling exible structures. Such couplegproach for beams is encoun-
tered, e.g., in the work of Borri and Bottasso [17] and Sonnevilkt al. [18]. Some researchers, e.g.
Hodges [19] and Zupan and Saje [20] have advocated the use ofrairstbased approach, which
relies on the intrinsic formulation of the beam equations and indirectlgouples displacement and
rotation.

From a mechanical viewpoint, displacement and rotation elds are opled: a bending moment
applied at the tip of a cantilevered beam cause transverse displaaam of the reference line and
application of a tip shear force produces rotation of the crosses®ns. Classical formulations treat
the rotation and displacement elds as independent; their couplingtems from the equilibrium
equations only. Accordingly, the interpolation method used in the ctsical approach interpolate
the two elds independently. This paper shows that treating the rtation and displacement elds
as a single, coupled entityj.e., as a motion, is a more natural approach, which results in a coupled
interpolation of the two elds. This choice leads naturally to the invarance of the formulation under
the superposition of rigid-body motions and to the objectivity of tle interpolated strain measures.
The resulting computational process becomes more e cient, as sérved by Gacesa and Jelenc [21].

This paper is organized as follows. First, the kinematic description bleams based on the clas-
sical and motion approaches are presented and contrasted. 8pkattention is devoted to the way
in which these two approaches behave under the superposition @fid-body motions. Objectivity
of strain measures is discussed next and the kinematic descriptioasked on motion is shown to
provide important insight into the problem. Finally, interpolation schanes for geometrically exact
beams are investigated. It is argued that the motion approach leado more e cient numerical
schemes that are objective and can represent constant straifates more accurately.



2 Geometrically exact beam formulation

This section reviews the formulation of geometrically exact beams.irt, the kinematics of both
classical and motion approaches are presented and contrastd&gkecause this paper focuses on in-
terpolation techniques, which are of a purely kinematic nature, it is ot necessary to derive the
equilibrium equations for the current discussion.

A beam is de ned as a structure having one of its dimensions much lamgthan the other two.
The reference curve of the beam is de ned along that longer diméms and the cross-section slides
along this curve. The cross-section's geometric and physical pespes are assumed to remain uni-
form along the beam's span. Often, beams are complex build-up sttures presenting elaborate
sectional geometries and laminated composite materials have foundreased use in many applica-
tions, leading to heterogeneous, highly anisotropic structures.irfally, the beam's reference curve
may also be initially curved.

For such constructions, cross-section out-of-plane and in-plmarping have been shown [22, 23,
24, 25, 26, 27, 28] to alter stress distributions and sectional stiess properties signi cantly. These
authors have developed rigorous reduction procedures to derivae-dimensional beam equations
from the equations of three-dimensional elasticity. The crosses®ns of the beam do not remain
planar nor normal to the deformed reference curve of the bearbut undergo a complex, three-
dimensional warping deformation. Nevertheless, the kinematics tie beam can be described
by a displacement eld and a rotation eld that de ne the six sectiond strain measures. The
sectional sti ness matrix is a byproduct of the reduction procedwe: the strain energy in the three-
dimensional structure is equal to that evaluated through the s&onal sti ness matrix and sectional
strain measures. These reduction procedures provide a rigoransans of approximating the three-
dimensional structure by a Cosserat solid.

2.1 Beam kinematics

Figure 1 depicts the reference and deformed con gurations of atarally curved and twisted beam.
The beam is generated by sliding its cross-sectioA,, along reference curvey in the reference
con guration.

In the reference con guration, reference curve
Gis de ned b_y_ parametric equa}tlon&)( ) wht_are Reference Cross.sectior
X Is the position vector of pointB on G with configuration after warping
respect to the origin of the inertial frame,F, =
[O;1 =({1;{2;{3)], and 2 R is the arc-length
coordinate along curveG. The cross-section is
de ned by frame Fo = Bg; Bg = (bio; bro; 1030) -
The plane of the cross-section is determined by
two mutually orthogonal unit vectors, by and byg.

In the deformed con guration, the parametric
equation of reference lineC becomesx( ). Typ-
ically, the material plane of the cross-section is
now distorted and warped. For convenience, a i
ctitious plane of the cross-section is introduced, Deformed gitious plan®
which is determined by two mutually orthogonal  configuration ¢ rpss-section
unit vectors, b, and b;, as depicted in g. 1. The
ctitious rigid cross-section is de ned by frame
Fr = [B;Br =(b;; b,;b;)] and the displacement
eld over the cross-section is decomposed into an
arbitrarily large rigid-section motion and an arbitrary warping eld.

Figure 1: Con guration of a curved beam.
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The position vector of material pointPo of the beam in the reference con guration is given by

Xpo( 3 27 3)= Xo( )+ 20m2( )+ 3bws( ); (1)

where , and 3 are the coordinates measuring length along unit vectots, and by, respectively.
It is convenient to introduce vectorg( 2; 3) = f0; 2; 39" and eq. (1) becomes

Xpo(: 20 3) = Xo( )+ Ry()a( 25 3); (@)

wherego( ) = [ bio; bo; b3g] 2 SO(3) is the rotation tensor for the cross-section.
In the deformed con guration, the position vector of material poit P becomes

Xp(5 20 3)= x( )+ RO)HR()A( 21 3); 3

where R( ) 2 SO(3) is a rotation eld associated with the cross-sections. Becauske beam is
allowed to twist and shear, this rotation eld is not related to the targent vectors to curveC, and
in particular, to Frenet's triad associated with curveC. Here, the description of the warping eld
is disregarded without loss of generality. Indeed, the warping eldventually a ects the sectional
sti ness matrix of the beam and leads to interpret the rotation eldas a ctitious averaged rotation
eld over the cross-sections but it does not a ect the kinematic s8ng of a beam.

A cursory look at egs. (2) and (3) reveals that the beam kinematids associated with frame
transformations of the cross-sections: the reference conrmgtion, characterized by rotation tensor
R _( ) and position vector x,( ), is transformed into the deformed con guration characterizedy
rotation tensor R( )R,( ) and position vectorx( ). Two approaches can be followed to represent
this change of frame( (1) the classical approach, in which the position and rotation elds areigwed
as independent, and2) the motion approach, which treats the same two elds as a unit.e. a
motion eld or a frame eld. Although these two approaches eventally use identical sectional strain
measures and equivalent equilibrium equations, they provide two dirent frameworks to describe
the beam kinematics. The two approaches are described in the follog sections.

2.1.1 The classical approach

In the classical approach, the rotation eld inSO(3) and the displacement eld inR® are treated in-
dependently. Most researchers describing beam kinematics has#oived this approach, see Simo [1],
Cardona and Geradin [4], Ibrahimbegovt [29], Romero and Armer@9], Atilgan et al., [5], Betsch
and Steinmann [10], among many others. The reference and defechton gurations are denoted
symbolically asQ[_ X,] and Q[_R ; X], respectively. The transformation from the reference to
the deformed con guratlon is then obtalned by the composition opation, denoted ,
h [ h [ h [
Q RR;x =Q Rjd Q R;Xy =Q RR;X,+d ; (4)

where Q[R; d] is the transformation that brings the reference to the deforntecon guration. Note
that rotation and displacement entities are composed independdyit rotations compose through a
product of orthogonal tensors representing rotations whergalisplacements compose through the
addition of vectors,x = x,+ d.

The composition operation expressed by eq. (4) can be formally figmed through a matrix
product when con guration Q[R; x] is represented by matrixQ(R; x), of size 7 7, de ned as

R 0,0,
QR;x)=40, , L, , x°: 5)
913 913 1



With this de nition, composition rule (4) is expressed axQ(RR R,; X) = QR; d)Q(R Xo)- Changes

in con guration have now been cast in the familiar framework of lineanlgebra. Unfortunately,
the original kinematics of the beam described by egs. (2) and (3)ro@t be expressed in the same
framework easily. Several representations are possible, and #e 7 introduced in eq. (5) serves an
illustrative purpose only.

2.1.2 The motion approach

In the motion approach, the reference and deformed con gurains are represented symbolically as
M [_ Xo] and M [_R ; X], respectively. The transformation from the reference to the éimed
con guratlon is obtalned by the composition operation,
h [ h [ h [
M RR;x =M Riv M R;Xy =M RR;RX;+V ; (6)

whereM R;v is the motion that brings the reference to the deformed con guteon. Note that
the composition rules for the classical and motion approaches diesee egs. (4) and (6), respec-
tively. Clearly, the compositions of rotation and displacement are mo coupled: the composition
of displacements,x = RX, + V, involves the rotation tensor. Comparing egs. (4) and (6) yields
V= “:3 5 R)x, + d. Although vectors v and d di er, the reference and deformed con gurations
are identical in both approaches.

The composition operation expressed by eq. (6) can be performégglough a matrix product
when con guration M R;Vv is represented by matrixM (R; V), of size 4 4, de ned as

M= = : (7)

With this de nition, composition rule (6) is expressed asM (RR X) = M(R;vM (Ro,xo) In

the following, the reference and deformed con gurations are deﬂred G, = H(R Xo) and G =
M (RR,;X), respectively, whereas the change in con guration is denotdd =M (R v), i.e. G =
H_G_ _The motion approach also presents a close connection to the be&imematic description
presented in section 2.1. Indeed, introducing the homogeneougresentation of vectors, eqgs. (2)

and (3) can be recast as

KPO(; 2; 3) %(EO’XO) 9( 2]i 3) : (83.)

Xp(; 27 3)

merrx 29 (8b)
where the matrix representation of the motion plays a prominent te. Several representations are
possible. For instance, Sonnevillet al. [18] used the homogeneous representation presented in
(7), Borri et al. [17, 30] and Bauchau [31] used the motion tensor representatioheveas Han and
Bauchau [27] used the dual quaternions representation. The 44 matrices introduced in eq. (7)
serve an illustrative purpose only.

2.1.3 Remark

Multiplications from the left-hand side only have been considered in ghcomposition operations of
egs. (4) and (6). Multiplications from the right-hand side could also & considered for both classical
and motion approaches. In fact, the right-hand side composition ithe motion approach leads to
the so-called \ xed-pole formulation” developed by Borriet al. [30, 32]. From a tensor analysis
perspective, the left- and right-hand side compositions are relatdo resolving tensor components
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in the material and inertial frames, respectively. This paper foces on the motion formulation
equipped with the left-hand side composition because this approaehjoys properties that are not
shared by the other approaches.

2.2 Superimposed rigid-body motion

Rigid-body motions play a fundamental role in mechanics: by de nitionrigid-body motions gen-
erate no deformation of the body. Indeed, a rigid-body motion is deed as the motion that leaves
the distance between any two material points of a body unchanged corollary, is that rigid-body
motions leave the angle between any two material lines of the body alranged. If elongations of
material lines and angular distortions of material line pairs are inhibit, strains vanish.

Let x3(; 2 3)andxB(; 2 3)be the position vectors of material pointP in con gurations
a and b of a body. Consider the following transformation of the position véars,

xp (5 2 3)ZKR+5RKS(; 2, 3); 9)

whereRR 2 SO(3) is a rigid-body rotation of the entire body about the origin of theinertial frame
and x® 2 R® a subsequent rigid-body translation of the entire body. It is veri @ easily that eq. (9)
describes a rigid-body motion: indeed, if applied to any two materialgints of the body, it leaves
their distances unchanged. Applied to an arbitrary, possibly defored, con guration of the beam,

Xp(5 25 3)=x*( )+ R IR,( )l 25 3); (10)
equation (9) implies
Xp(5 2 3)= X"+ RU( )+ RRRY(R,()A( 2 3); (11)

leading to a beam con guration characterized by position vector®( ) = xR+ ERK"( ) and rotation
tensorR( )R, ( ) = RRR*( )R ( ).
The classical and motion approaches represent rigid-body motioosbeams in distinct manners.
In the classical approach, con gurationQ[R*( JR,( );x?( )] of a beam is moved by means of a
rigid-body motion to a new con guration Q[R’( )R ( );x"( )] which, according to composition
rule (4) for the classiﬁal approach, are related as ] _
i i
Q R°(HR():x() =Q Rid Q R*(IR( )ix*( ) ;
leading to h i
Q Rid = Q RRUxR+(RR L, )x*( ) : (13)

(12)

On the other hand, using composition rule (6) characterizing the nion approach, the relationship

between the same cgn gurations becomes H _
| |
M R(HR,( )x() =M Riv M R )R )ix*( ) ; (14)

leading to
M Riv =M RF;x": (15)

Comparing egs. (13) and (15) shows that the classical and motiop@oaches handle rigid-body
motions in a di erent manner. In both approaches, the rotation tesors are identical and equal
the rigid-body rotation tensor. The displacement vector, howeveis quite di erent: for the motion
approach, the displacement vector is simply the rigid-body translain whereas in the classical
approach, the displacement vector is spatially varying and dependm the rigid-body rotation
tensor. Clearly, the motion approach greatly simpli es the manipulabn of rigid-body motions,
which is an essential aspect of mechanical formulations. It can bkosvn that the simple result
expressed by eq. (15) only occurs when left-hand side composisi@re used.
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2.3 Sectional strain measures

Sectional strain measures describe the deformation incurred ¢hg the motion that brings the
beam from its reference to its deformed con guration. They mussatisfy two requirements: (1)

must vanish in the reference con guration anqd2) must remain una ected when a rigid-body motion
is superimposed to both con gurations.

2.3.1 The classical approach

In the classical approach, the rotation and displacement elds areeated independently and two
sets of sectional strain measures are derived from those two slithdependently. The material,
or local frame, derivative of the rotation tensor in the referencand deformed con gurations are
de ned as

o )= RIORY) | | (162)
|
)= R R() ROR() (16b)

respectively. Notation ()%indicates a derivative with respect to curvilinear variable and notation
(O) indicates a 3 3 skew-symmetric matrix, saya; built from the components of 3 1 vector

a = fay;ay;asg’. Curvature tensorsk, and K are skew-symmetric because rotation tensors are
orthogonal. The elastic curvature eld is now de ned as

{C)=k() kol ): (17)

The elastic curvature eld satis es the two requirements stated a&lier. First, the curvature eld
vanishes in the reference con guration. Second, it is una ectedylthe superposition of rigid-body
motions. In the reference con guration, eq. (11) implies that thesuperposition of a rigid-body
rotation, RR transforms R( )R () into RRR( )R ( ). The material derivative now becomes

[R*R( R, (ITIRYR( IR, ( )1°=[R( IR ( N'[R( )R,( )1°= KR( ), where the second equality
stems from the fact that rotation tensorBR is spatially invariant. Clearly, the material derivative,

and therefore the elastic curvature eld, is una ected by the suprposition of rigid-body rotations.

Furthermore, it is easily shown that the material derivative in the réerence con guration is not
a ected by a rigid body transformation, which makes the componés of the material derivative

vectors independent of the choice of a frame for the descriptiofh the reference con guration.

The spatial derivative of the displacement eld xY ), is not invariant under a superposed rigid-
body motion and therefore, cannot be used as is as a strain measumndeed, eq. (11) shows that the
superposition of a rigid-body rotation transformsxY ) into R*xY ). To overcome this problem,
material derivatives are introduced in the reference and curremibn gurations as

Gl )= RT( )Xo( ) (18a)
o )= R( IR ( ) 50( ); (18b)
respectively. The elastic strain eld is de ned as

()=c) «(): (19)

The elastic strain eld satis es the two requirements stated earlierFirst, the strain eld vanishes
in the reference con guration. Second, it is una ected by the sugrposition of rigid-body motions.
In the reference con guration, eq. (11) implies that the supermition of a rigid-body rotation
transforms R( )50( ) into ERQ( )50( ) and x{ ) into QRE’( ). The material derivative now
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becomesR¥R( )R, ( )I"[R*x( )I°=[R( )R,( )I"xY )= ¢ ), where the second equality stems
from the fact that rotation tensor RR is spatially invariant. Clearly, the material derivative, and
therefore the elastic strain eld, is una ected by the superpositin of rigid-body motions. Again, it
is easily shown that the material derivative in the reference con gation is not a ected by a rigid
body transformation, which makes the components of the matetiderivative vectors independent
of the choice of a frame for the description of the reference cauration.

The material derivatives are gathered into 6-dimensional vectos} ( ) = fc( );ks( )g and
ET( )= fc"( ):k"( )g, and the six components of the sectional strain measure are dech as

E()=E() Eof )= i(()) : (20)

These classical sectional strain measures are those postulatgdSimo and Vu-Quoc [3]. The
physical meaning of each component is understood easily:is the axial strain, , and 3 the shear
strains along unit vectorsh, and bs, { ; the twist rate, and { , and { ; the bending curvatures about
unit vectors b, and bs.

2.3.2 The motion approach

The sectional strain measures are derived easily from the motionpapach. Using the 4 4 matrix
representation de ned by eq. (7), the following result is obtained,

_ ROROINT  [ROIR(II™X( ) [Ry( IR xX )
g K )go( )= = 91_03 N _?I- - 91_3 0 (1)

The following notation is introduced:

c'()e)=e()= ¢ ) &) 22)

where matrixK( ) and vectorc( ) are de ned by egs. (16b) and (18b), respectively, an@) indicates
the 4 4 matrix built as above from the components of the 6 1 vectorE( ). Clearly, E is invariant
under a superimposed rigid-body motion since the latter, which takehe form of a left multiplication
of G by a spatially invariant M (RR xR), leavesE una ected. Note that taking a spatial derivative
of eq. (8b) yields

xp(; 2 ;
_P( 02 3) — g( )E( ) 9( 21 3) : (23)
which shows the close connection betvveen the motion approach dehm kinematics.
It is veri ed easily that Eyx( ) = 1( )GO( ) and the de nition of the sectional strainsE( )

is then given by eq. (20). All the sectlonal straln components arebtained from a single matrix
operation.

2.4 Strain energy

Based on these sectional strain measures, the strain energy i theam is expressed as
Z L

A= E'( )D( )E( )d; (24)

NI =

0

whereD( )isthe 6 6 sectional sti ness matrix. For uniform beams presenting simple @ss-section
geometry and material distribution, the sectional sti ness matrixis diagonal and remains constant
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along the span of the beam. In more general cases, it can be datifom a linear nite element
analysis of the cross-sections, see Bauchau and Han [25], for ins&a

The strain energy is identical for the classical and motion approaek and hence, application of
the principle of minimum total potential energy will yield equivalent eqilibrium equations. The
underlying kinematic representation is, however, di erent. Becae this paper focuses on the kine-
matics of the nite element interpolation, it is not necessary to derig the equilibrium equations. For
the interested readers, the references cited in the introducticall derive the equilibrium equations
of the problem.

3 Finite element interpolation

The classical interpolation approaches used for linear spaces aggiewed in section 3.2 and inter-
polation techniques suitable for geometrically exact beams are dissed in section 3.3. The choice
of the interpolation scheme for the position and rotation elds is essitial as it determines the in-
terpolation of the strain measures and eventually the elastic fore@and the tangent sti ness matrix
of the nite element. Clearly, the more appropriate the choice of té interpolation functions, the
higher the performance of the nite element. In that respect, wite the approaches for linear spaces
and beams di er, the performance of any interpolation method is calitioned by the requirements
stated in section 3.1: the ability to represent rigid-body motions andonstant strain states.

3.1 Requirements for convergence of the nite element metho d

In the nite element method, kinematic elds inside an element are intgpolated based on their nodal
values. Zienkiewiczet al. [11] state two important properties that are required for the covergence
of the nite element method.

Criterion 1  (Objectivity) . The displacement function chosen should be such that it does permit
straining of an element to occur when the nodal displacemsrare caused by a rigid-body motion.

Criterion 2 (Constant strain state). The displacement function has to be of such form that if nodal
displacements are compatible with a constant strain conidibh such constant strain will in fact be
obtained.

An important remark follows these criteria: (...) Strictly, both criteria need only be satis ed
as the size of the element tends to zero. However the impositbf these criteria on elements of
nite size leads to improved accuracy. (...) Failing to satisfy the second criterion leads to locking
phenomena, including the shear locking of shear deformable beanNext, classical interpolation
schemes for linear spaces and for geometrically exact beams will s@wated in light of these two
criteria.

3.2 Interpolation in linear spaces

Let the con guration of a unidimensional but not necessarily strailgt structural component be
represented by position eldsx,( ) 2 R®andx( ) 2 R%, 2 [0;L], in its reference and deformed
con gurations, re ectively. The displacement and strain elds ared( )= x( ) Xo( )and _( )=
xY ) x8( )= dY ), respectively.

Consider a nite element discretization: the structural domain is deomposed intoM nite
elements of equal length = L=M and interval 2 [(m 1);m’] is associated with element

indicates an interpolated quantity. For an element of ordeN, the interpolation is based onN + 1



nodal values denotec; = x[(m 1)'+i=N1],i =0;1;:::N. The classical approach uses Lagrange's
polynomials, f;( ), as interpolation functions

X
x()=  Hi(C)Nx; (25)

i=0

where 2 [ 1;1] is a non-dimensional spatial parameter de ned within each elemeas ( ) =
2= 2m+1, which also implies ( )= ( +2m 1)=2. The abscissa of nodeis denoted ; and

= (i+2m 1)=2. Lagrange's polynomials are de ned by the following conditiond:( ;) = O if
16 andfi(;)=11if i =j. For later use, useful properties of Lagrange's polynomials areattd,

fi()=1; (262)
i=0
X
BOO< ) < (O1=0; (26b)
i=0
X gt
dfl( ) ik+1 :(k+1) k; (260)

i=0 d
where ( )= a + b a;b2 R and integerk <N . With the help of property (26a), eq. (25) can be

recast as
X

fi( )si()=0; (27)
i=0
wheres;( ) = x( ) x; is the relative position of node with respect to x( ). Hence, the classical
interpolation formula can be interpreted as requiring the vanishing fothe weighted average of
}pe relative positions. The mtg;polated displacement and strain eld are expressed ad( ) =
o FiC )X Xo( )and ()= o TR0 )X x3( ), respectively. In nite element isoparametric
formulat|9n the same |nterpolat|on scheme is used for the refemnand deformed con gurations,
Xo( )= o fi( )Xq. The interpolated displacement and strain elds now become

X X
dai)= i) x¢)=  fi()d; (28a)

i=0 i=0

()= RO xq)= f0)d; (28b)

i=0 i=0

whered, = x; X, is the displacement of nodée. Because the reference and deformed con gurations
are discretized with the same interpolation scheme, the interpolatadisplacement and strain elds
vanish exactly in the reference con guration.

3.2.1 Order of convergence

The approximation of displacement eldx( ) via interpolation (25) leads to an error whenx( )

is a polynomial of degree higher thafN or a non-polynomial function. The interpolation formula
presents anN + 1 order of convergence under mesh re nemente., kx( ) x( )k/ “N*1. For

instance, a two-node element\ = 1 yields an exact interpolation for a linear polynomial but incurs
an order-2 error for all other functions.
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3.2.2 Objectivity

The nite element interpolation must be objective. According to crierion 1, this implies that
the interpolated strain eld must remain una ected by the superpaition of rigid-body motions.
Equivalently, this implies that the interpolated displacement eld mustbe able to represent rigid-
body motions exactly.

Assume that a rigid-body motion brings con gurationa to con guration b. For the present
problem, a rigid-body motion is obtained by adding an arbitrary displaement vectorr 2 R to the
position or displacement eld such thatx?( )= x®( )+ r andd®( )= d?( )+ r, but the strain is
una ected °( )= 2( ). Under this rigid-body motion, the nodal position and displacementectors
becomex? = x2 + r and d® = d® + r, respectively. Introducing these expressions into eqs. (28a)
and (28b) and using properties (26b) and (26c) leads t(_ib( y=d()+rand P()= 2).
Clearly, interpolation scheme (25) is objective because the compesding strain eld is una ected
by rigid-body transformations.

3.2.3 Constant strain state

Criterion 2 implies that the interpolation must be able to represent aastant strain states exactly, at
least under mesh re nement. The constant strain state is charterized by position, displacement,
and strain elds x( )= xo( )+ r_,d( )= r_,and_( )= r, respectively, for an arbitrary vector
r 2 R%. The corresponding nodal position and displacement vectors axe= x°+ r andd, =

ir, respectively. Inserting these expressions into eqs. (28a) ar&B) and using properties (26b)
and (26c¢) leads tod( ) = r_and _( ) = r, respectively. Therefore, interpolation (25) is able
to represent constant strain states exactly. Because the coast strain state is associated with
a linear displacement eld and because the two-node element repgets this linear displacement
eld exactly, the constant strain state is represented exactly. fe properties (28a) and (28b)
isoparametric formulation are key to this proof.

3.3 Interpolation in geometrically exact beams
3.3.1 Interpolation of rotation

In the classical approach to beam kinematics, position and rotatiorlds are interpolated inde-
pendently. For the position eld, the traditional discretization based on Lagrange's polynomials
is usually used, see eq. (25). The discretization of the rotation elts a far more delicate issue
that has received considerable attention in the literature, see fanstance Cris eld and Jelent [7]
or Romero [33]; a comprehensive review of the eld is given by Bauchaand Han [34]. More re-
cently, contributions of di erential geometry, see e.g. [35], havehewn that it is possible to bypass
the global parametrization of rotation, thereby obtaining a frameork whose performance is not
limited by the singularities inherent to a three parameter parametrition [36].

Let S( ) = R( )50( ) and S, denote the rotation eld in the deformed con guration and
its value at nodei, respectively. Clearly, direct interpolation of the rotation tensoy S( ) =

iN:o fi( )§i' is not a valid approach because a linear combination of orthogonarsors is not an

orthogonal tensor,i.e., the interpolated quantity is not a valid rotation tensor. Anot'h,er goproach
is to formulate the interpolation in terms of rotation parameterss, = Ep[éi] ass( )= iNzo fi( )s,

where Ep[] extract the rotation parameters for a parametrizationp of the rotation tensor, see
Appendix A. The interpolated rotation tensor is then obtained asS( ) = gp[g,( )], where gp[]

extracts the orthogonal rotation tensor related to parametriation p. This approach, however, is
not objective, as pointed out by Cris eld and Jelent [7] and su es from singularity issues.
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These issues can be overcome by interpolating relative rotatlonsetLZ SgS be the rela-
tive rotation tensor of nodei with respect to node O taken as a reference and the corresporgdin
relative rotation parameter vector is denotedz; = Ep[:i]' Bauchauet al. [37, 34] have shown that

interpolation schemez( ) = iN=o fi( )z, provides an e cient solution to the problem, leading to a
proper interpolated rotation tensor,S( ) = goip[Z( )]. Because relative rotations within a nite
element remain small, any parametrization of rotation can be used drsingularities do not a ect
the interpolation process; di erent choices were presented bydhle researchers and were shown to
have little impact on the interpolated eld. It can be shown that this interpolation method is
objective. Nevertheless, the interpolated eld depends on the alte of the reference node within
each element, although this dependency decreases with mesh esment.

Merlini and Morandini [38] used an implicit interpolation scheme that bpasses the need for the
selection of a reference node in each element. In this approache telative nodal rotation is de ned
as gi( ) = S( )Téi, where S( ) is the yet unknown interpolated rotation eld, and the relative
rotation parameter vectors are denote@i( ) = Ep[gi( )]. The interpolation scheme then states

X
fi()p()=0; (29)

i=0

which echoes classical interpolation scheme (27) written in termsrefative positions. Equation (29)
de nes the interpolated rotation eld in an implicit manner and can be wsed with any vectorial
parametrization of rotation. A numerical solution procedure is give in Appendix B.

To better understand the scheme, the derivation of a quasi-explicexpression is desirable.
The relative nodal rotation vector is de ned by a composition of ration operation, ip[ﬂ( )] =

(gp[g,( )])Tgp[gi]. For all vectorial parametrizations of rotation, this compaosition peration can be
expressed by the equivalent form [31]

AR()= 0 (5= s+ 8is2): (30)

Rotation parameter vector s is associated with two scalars, = (2sin =2)=ksk and " =
(2tan =2)=ksk, where is the rotation angle as de ned by Euler's theorem on rotation. Sim-
ilar relationships associate scalars; ‘and ™} with p and scalars ; and "; with s;. Introducing
eg. (30) into interpolation scheme (29) then yields
" I
X o T -
"s( )= fi( ) oGt ésﬁ) fil )xs (31)
=0 b i=0 !
This expression provides the interpolated rotation elds, but it is not an explicit expression because
scalar functions" and % are functions ofs. Although the implicit interpolation scheme uses the
classical interpolation functions of the nite element method, quasexplicit expression (31) indicates
that the interpolation procedure is far more complex than its classit counterpart, see eq. (25). In
practice, a ne enough mesh implies that the relative rotations withinthe elements are small, so
that " 1and”? 1.

In some cases, explicit expressions of the interpolation eld resulgnfrom scheme (29) can
be obtained. For a two-node element, it is found easily that the intpolated eld is given by
S()= §o§p[(1 + )901:2], whereE)Ol = Ep[éggl] Is the relative rotation of node 1 with respect to
node 0. For this two-node case, the interpolated rotation eld is id@ical to that obtained with
the interpolation based on a reference node discussed above. Wtiee Cartesian rotation vector is
used as a parametrization, the scheme leads to an interpolated \ature that is constant over the
element and defaults to the formula proposed by Cris eld and Jelenkiet al. [7] or equivalently, to
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the spherical linear interpolation abbreviated as \Slerp,” proposed by Shoemake [39] for computer
animation applications in 1985. If the Euler-Rodrigues parametrizain [31] is used, implicit inter-
polation scheme (29) can be recast easily in terms of unit quaterngrbecause the Euler-Rodrigues
parametrization represents, in fact, the vector part of a unit gaternion. An explicit expression
of the interpolation scheme for the Euler-Rodrigues (ER) parametation, that is obtaining an
interpolated parameter eld sgg () of S( ) from nodal parameterssgg; of S, is

_ 2 X
Ser( )= F = G > fi( ) Seri (32)

P o
Nofi( ) 4 SlpiSeri  *i e il ) Sgryii2 0

terms ofP quaternlons the interpolation takes the simple expre®n §() =
Nofi( )&=k L, fi( )&k, where g are the nodal unit quaternions and$( ) the interpo-
lated unit quaternion eld. The scheme, interpreted easily as the \armalized weighted sum of
the nodal unit quaternions,” was used by a number of authors, sefor instance, Bauchau and
Han [34].

3.3.2 The motion approach

The interpolation schemes for rotation discussed in the previouscéen can be extended to the
interpolation of motion easily. For simplicity, the matrix representaton of the motion de ned
by eq. (7) is used in the following development. LeG( ) = H( )G ()= MI[S( );x( )] and
G =M [_ x;] denote the motion eld in the deformed con guratlon and its value & node i,
respectlvely The relative nodal motion is de ned ay/. ( ) = G() 1G where G( ) is the yet
unknown interpolated motion eld and the relative motion parametervector is denotedP,( ) =
Ep[\:/i( ), WhereEp[] extracts the motion parameters for parametrizatiorp, see Appendix A. The
implicit interpolation scheme now writes

X
fi( )P;( )=0: (33)

i=0

Here again, the interpolation scheme is implicit and can be used with amgctorial parametrization
of motion [40]. The parametrization of motion at node can be expressed explicitly as

" " #
T OS8O (x x()

= =pi

TTO)S' () x() .
p() p() '

P()= = (34)

Wherelp[g] is the tangent operator for rotation parameter vectop, see Appendix A, andlp_i( )=

lp[Ei( )]. Clearly, rotation interpolation scheme (29) is a subset of the psent motion interpolation

scheme and hence, the discussion focuses here on the interpatatibthe position eld, which can
be expressed explicitly as

X T
OIS O x()=0 (353)
N i=0
X B o - |
o X()= fi( )L, ()S () ()L, ()s C)x (35b)

i=0 i=0

As expected from the motion formalism, which kinematically couples éposition eld and the
rotation eld, the interpolated position eld depends on the rotation eld. Although interpolation
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scheme (33) is written in terms of Lagrange's polynomials, the positioeld is interpolated by means
of far more complex, con guration dependent, nonlinear interpoten functions, corresponding to
a weighted average of the nodal positions normalized by the sum bktweighting factors. Note the
similarity between the rotation and position eld interpolations, egs.(31) and (35b), respectively.
The coupling between displacement and rotation enters position imgolation scheme (35a) through
tangent operatorlp;i( ) evaluated for the relative motion at nodei. If this coupling is eliminated

by setting lp;i( ) = L, eq. (353) becomesp i—o fi( )ST( )(X;  Xx()) =0 and hence,x( ) =

,Nzo fi( )X;, which is the classical position interpolation scheme, see eq. (25)heTvalues of the
interpolated position eld at a given node is exactly the nodal positiorat that node. Indeed, at
a given nodei, the Lagrange polynomials achieving unity at the other node vanishe. f;( i) =
0; j 6 i while fi( ;) =1, and the interpolation formula in Eq. (35a) reduces tox( i) = x;. The
interpolation formula interpolates thus exactly the nodal positions;, and the coupling with the
rotation eld leads to (potentially) higher-order polynomial contributions which are interpreted as
"bubble modes."

Using the composition of motion expression, a quasi-explicit exprass that mirrors eq. (31)
for the motion parameters of the interpolated motion can be obtagd. If the Euler-Rodrigues
motion parametrization [31] is used, motion interpolation scheme (BZan be recast easily in
terms of dual quaternions, because the Euler-Rodrigues paranmation represents, in fact, the
)gector part oflg dual quaternion. An explicit expression of the intgolation scheme iss( ) =

o fi( )si=k 2 0f ( )sik, wheres; are the nodal dual quaternions and the interpolated dual
quaternlon

3.3.3  Objectivity

The attention now turns to the objectivity of the interpolation scheme. The beam undergoes a
rigid-body motion that brings it from con guration ato con guration b, see section 2.2. According
to criterion 1, objectivity requires the invariance of the interpolaéd eld under rigid-body motions.
The position of nodei after the transformation is xP = RR&&‘ + xR, the rotation at node i is
S° = R®S" and the motion at nodei is G’ = H¥G?, whereHR = M (R%; x®).

For the classical approach, the interpolation scheme (25) then idigs x°( ) = ::':0 fi( )X =
R"x"( )+ x*, which matches transformation (11). For the rotation eld, equéon (29) now yields
the interpolated rotation eld as S°( ) = R-S'( ), which matches transformation (11). This result
stems from the fact that the interpolation of rotation is based on elative rotations only, which
remain una ected by rigid-body motions. Because it represents agid-body exactly, the classical
interpolation scheme is objective.

Because interpolation scheme (33) for the motion approach is bdsen relative motion only, it
remains invariant under the superposition of rigid-body motions, ahhence, is objective.

3.3.4 Convergence order for arbitrary con gurations

The interpolation scheme for linear spaces in eq. (25) is exact whemetdisplacement eld is a
polynomial of degreeN or less. For more general displacement elds, the interpolation smme
incurs an errorkx( ) x( )k/ “N*1: asthe element size,, decreases under mesh re nement, the
error decreases by a factor ™. For the two-node elementN = 1, an order-2 error is expected.
The same level of error is incurred by rotation interpolation schem@9). Indeed, the relative
rotation parameters, Ei( ), are interpolated with Lagrange's polynomials and hence, this stepcurs

anerrorkp( ) p( )k/ "N*1_The same observation applies to relative motion parameteBs ( ).
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3.3.5 Rotation interpolation for constant curvature state S

In preparation of the study of constant strain states, considea beam undergoing a constant cur-
vature deformation. For simplicity, it is assumed that the curvatue of the beam in the reference
con guration is constant, i.e., k, is independent of . For this constant curvature state, the elastic
curvature, {, is independent of and the integration of the di erential equation (16) yields the
rotation eld as
S( )= S(0)exp( K); (36)

whereS(0) is an initial condition at = 0. Note that the exponential appearing in this expression is
a natural consequence of the solution of the di erential equatigrit does not result from a particular
choice of parametrization of rotation.

Equation (36) now implies that the rotation at nodei is gi = S(0)exp( iK) and the relative
rotation becomesgi( )= S( )Tgi =exp[( i Rl =exp[ (i )KR=2]. Interpolation scheme (29)
now implies

fi()p, expGGLi )R) =0 (37)
i=0
Any vectorial parametrization of rotation [41] can be expressed iterms of the rotation axis and of
a scalar function of the rotation angleg,, which, in the present case, reads

. “Kkk K

b, exp(é( i )K) =0 T( [ ) @ (38)
Because the unit vector about which the rotation tg,kes placek=kkk, is constant, interpolation
scheme (29) reduces to a scalar interpolation formula iN:o fi( )op [ KKK( )=2] = 0. Given the

properties of Lagrange's polynomials, this interpolation formula is @ected to incur an order-{ +1)
error because functiorg, is, in general, a nonlinear function of its argument.

More precise conclusions can be reached for speci ¢ parametriaat of rotation. Consider, for
instance, the Cartesian rotation vector [31], which corresponds the exp-log parametrization, for
which function gex, is simply a linear function of is argumentgeyp [ KKK( )=2] = "kkk( ; )=2.
In this case, the scalar interpolation formula is satis ed exact 8N 1, i.e., for any nite element
with two or more nodes. Clearly, interpolation scheme (29) used inmmoinction with the Cartesian
rotation vector provides an exact representation of constantucvature states for nite elements of
nite size.

Interpolation scheme (29) can be used in conjunction with any vemtial parametrization of
rotation, such as Cayley parameters, Euler-Rodrigues paramete Wiener-Milenkovtc (CRV) pa-
rameters, among many others [31, 41]. Consider for instance thdR\C parameters for which
Oerv [ KKK( )=2] = 4tan[ KkK( i )=8]: function gcry is an odd function of its argument.
Therefore, odd and even Lagrange's polynomials of ord&r and N + 1, respectively, both lead to
an order-(N + 2) error. In particular, for two-node elements,N = 1, an order-3 error is incurred
for the representation of constant curvature states, and fahree-node elementsN = 2, the same
order is achieved. For four-node elements| = 3, an order-5 error is obtained.

In summary, interpolation scheme (29) for the interpolation of castant curvature states is
higher, namely at leastN + 1, and N + 2 for odd N, than for arbitrary con gurations, for which
the level of accuracy is strictly of ordeMN + 1. Finally, it should be mentioned that the error is a
function of the magnitude of the curvature kkk, and hence, the error decreases with decreasing the
magnitude of the curvature.

3.3.6 Constant strain states in the classical approach

Consider now a beam undergoing a constant strain state. For simplyc it is assumed that the
beam's reference line is helicoidal,e., both k, and ¢, are constant over the beam's span, which
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corresponds to a beam with a helicoidal reference curle For constant strain states, the curvature,
Kk, and strain vectors,c, remain constant and integrating eq. (18) yields the position eld as

X( )= X(0)+ SO)TT ( k)¢ (39)

wherex(0) is an initial condition at =0 and lep is the tangent operator associated with the exp
map. This operator is a natural consequence of the solution of thierential equation; it is not
the result from a particular choice of parametrization of rotation.Because tangent operatoLXp is
a nonlinear function of its argument, the position eld depends on th rotation eld in a nonlinear
manner. Equation (39) also describes a helicoidal reference curve

The position of nodei as obtained from eq. (39) ix; = x(0)+ g(O)lZXp( iRK) icand the classical

interpolation scheme (25) now impliex( ) = x(0) + S(0) iN=o fi( )lgxp( iK) ic, which matches
the exact solution in eq. (39) if

X
f()TL (iR ie= TT (K)o (40)

i=0

In general, this condition is not satis ed: due the nonlinearity of thgangent operator, the weighted
sum of ill—xp( iK) is not equal to llxp( K). Two notable exceptions are wherk = 0 or Rc = 0,
which imply that the beam is straight in its deformed con guration. Caosequently, classical inter-
polation schemes for the position eld cannot represent constastrain states exactly for elements
of nite size.
Performing a series expansion of the tangent operator, conditig¢d0) becomes
" |
b3 X S+ j+1 ' MR #

fi() — < m c=0: (41)

Property (26b) of Lagrange's polynomials then shows that the SN terms of this series vanish,
and hence, the interpolation (25) incurs an orderN +1) error for constant strain states, as expected
for Lagrangian interpolation. These developments show that mesie nement and higher-degree
Lagrange polynomials reduce the interpolation error on the positiorld when representing constant
strain states and hence, the classical interpolation scheme sa#is criterion 2.

3.3.7 Constant strain states in the motion approach

Assuming again the beam's reference line to be helicoidag., k, and ¢,, and henceE,, are constant
over the beam's span, the exact solution for constant strain stas is found by integrating eq. (21)
for a constantE as

G( )= G(0)exp( E); (42)

whereG(0) is the initial condition at = 0. Because the motion formalism treats the displacement
and rotation elds as a unit, this solution combines egs. (36) and (39 The treatment of the rotation
eld in section 3.3.5 is a subset of the present development. The ttezent of the displacement,
however, diers from that discussed in section 3.3.6. Indeed, thet@mpolated position eld, see
eg. (35b), becomes

" #." #
X : X .
x()=x0)+  H()T,TS() HOTTST(SOTL (R ¢ (43)

i=0 i=0
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This expression matches the exact solution (39) if the following comidn is satis ed,

" # 1" #
X . X .
fi()T,7S"()S(0) ()T, ()SOIL (K i c=TL (R  (44)

i=0 i=0

This condition is identical to that found for the classical interpolatim scheme, see eq. (40), if the
e ect of the relative rotations is ignored,i.e., by setting T T  to be the identity matrix.

Detailed analytical developments based on the propertles of thengent operators could be used
to evaluate analytically the order of convergence of the position lé@ under mesh re nement. A
numerical investigation leads to the following conclusions, which areetical to those obtained for
the interpolation of the rotation eld. If the Cartesian motion vector, or exp-log parametrization,
is used to parametrize the motion, the scheme provides an exacpresentation of a constant strain
states for elements of nite size. For other parametrizations of ation, the order of convergence
for constant strain states is at least 3 andN + 2 for odd Lagrange polynomials. In particular, for
two-node elementsN = 1, an order-3 error is observed for the representation of cdast strain
states, which is one order higher than achieved with the uncoupledéanpolation scheme.

In summary, interpolation schemes based on motion represent tpesition eld associated with
constant strain states more accurately than those interpolatinthe position and rotation elds inde-
pendently. For the parametrization based on the Cartesian motiowector, an exact representation
is obtained. For other parametrization, the interpolation based omhe motion enjoys better con-
vergence rates than its counterpart based on the separate dtement of position and rotation elds.
In view of the basic requirement of the nite element method, critaon 2, the interpolation based
on motion is thus superior.

3.4 Numerical example

The observations made in the previous sections are here illustrateith a numerical example. Both
arbitrary and constant strain con gurations are considered. Th length of the beam is normalized
to unity.

The con guration used by Bauchau and Han [34] is used here for tlebitrary con guration.
The position eldis x"( )=[sin2 );cos2 1;0:5 +sin4 ]and the rotation eld is expressed in
terms of a unit quaternion eld as&'( ) =[cos ; sin sin cos; sin sin sin ; sin cos ], where

()=08sin, ()=2sin0:8 +0:6cos, and ( ) = cos 1. For the constant strain
con guration, the position and rotation elds are given by eq. (39)and eq. (36), respectively, with
k" =[0:7302 0:34390:5841],c" =[0:61710:9502 0:0344],S(0) = 1, and x(0) = 0.

The exact and interpolated position elds are computed in each niteelement at four Gauss
points denoteds,. Two-, three- and four-node elements are considered. The reél&t error on the
position eld is measured as

_ 1 X kx(s) x(sok,
NGp k=0 kl( k)k '

(45)

where Ng, = 4N¢ is the total number of Gauss points and\e the number of elements. For the
rotation eld, the error is computed as

Xeo
kR (s)R(s«) Lk (46)
=0

e_i
" Ng

Figure 2 shows the error in the interpolated position eld de ned by g. (45) for an increasing
number of elements when using interpolation scheme (25). This soieis the classical interpolation
scheme used in the nite element method applied here to an arbitrastrain distribution. The gure
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shows that for elements featuring two, three, or four nodes, ¢hconvergence rate is 2, 3, or 4, as
expected. Figure 3 shows the corresponding results for a comstatrain distribution; convergence
rates are identical for both arbitrary and constant strain distrilutions.

— 2-Node

. — = 3-Node
107 - - Saan

| eegeesd 4-Node

10° 10’ 10? 10°

Figure 2: Error in interpolated position eld versus number of elemds for interpolation
scheme (25); arbitrary strain distribution.

0 e e T e
e

Figure 3: Error in interpolated position eld versus number of elemds for interpolation
scheme (25); constant strain distribution.

Next, the attention turns to the interpolation of the rotation eld using interpolation
scheme (29). Figure 4 shows the interpolation error de ned by e@46) for an increasing num-
ber of elements when dealing with an arbitrary curvature distributia. The gure shows that for
elements featuring two, three, or four nodes, the convergencae is 2, 3, or 4, as expected from
Lagrangian interpolation. The analysis presented earlier predicts adtical convergence rates for
all vectorial parametrizations of rotation. The results presentkin g. 4 conrm this nding by
showing that the convergence rates for the Cartesian rotatioregtor (+), the Euler-Rodrigues pa-
rameters (), the Cayley-Rodrigues parameters?), and the Wiener-Milenkovt parameters @) are
indistinguishable.

Figure 5 shows the corresponding results when dealing with a congtaurvature distribution.
As expected from the analysis in section 3.3.5, for any number of resj the error vanishes when
using the Cartesian rotation vector to parameterize rotation. Fothe other parametrizations, two-
and three-node elements display a convergence rate of threeewdas a convergence rate of ve is
observed for the four-node elements, as expected.

Finally, gs. 6 and 7 show the error in (45) obtained when using motiorinterpolation
scheme (33). In particular, the interpolated position eld is obtaind using eq. (35b). The observa-
tions about the convergence order are identical to the ones maaben examining the interpolation
of the rotation eld. Comparing g. 3, obtained with the classical interpolation scheme (25), with
g. 7, obtained with motion interpolation scheme (33), reveals thasmaller error are incurred with
the latter interpolation scheme.
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Figure 4: Error in interpolated rotation eld versus number of elemets for interpolation

scheme (29); arbitrary curvature distribution. Cartesian rotaton vector (+), Euler-Rodrigues pa-
rameters (), Cayley-Rodrigues parameters?), Wiener-Milenkovt parameters 2).
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Figure 5: Error in interpolated rotation eld versus number of elemets for interpolation
scheme (29); constant curvature distribution. Cartesian rotabn vector (+), Euler-Rodrigues pa-

rameters (), Cayley-Rodrigues parameters?), Wiener-Milenkovt parameters )

This numerical investigation con rms the analysis presented in therpvious sections. Using the
motion interpolation approach provides higher accuracy and higheonvergence rates for constant
strain con gurations.

3.5 Explicit interpolation for small curvatures

Because the interpolation scheme discussed in this paper is implicit, itnst understood as easily
as the classical nite element interpolation schemes. In particulathe interpolated position eld
de ned by eg. (35b) may seem enigmatic. If the relative rotationsemain small within an element,
the nite element curvatures, i.e., the curvatures of the reference curve multiplied by the length of
the element, are small. Then, a more explicit expression for the inpelated position eld can be
easily derived. Indeed, small relative nodal rotations can be appimated agP. ( ) I I T { )

which impliesp [_( )] = _i( ) and the interpolation of rotation now states . 0f ()u()=

Furthermore, for any parametnzgtlon of rotation, the tanger]goperator for can be approxmated as
T T=1 7()=2,whichleadsto i, fi( )T, T( )=1L 1=2 I, fi( )7( )= L, where the second
equallty follows from the interpolation of the rotation eld. Introdu cing these approximations into
eg. (35b) leads to

X 1 X

x()= fi()x 5 F()~=0)x: (47)

i=0 i=0
where _i( ) = S() (). The rst term reproduces the classical interpolation scheme ahthe
second stems from the uni ed treatment of the position and rotadbn elds inherent to the proposed
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Figure 6: Error in interpolated motion eld versus number of elemerst for interpolation scheme (33);
arbitrary strain distribution. Cartesian rotation vector (+), Eule r-Rodrigues parameters (),
Cayley-Rodrigues parameters?), Wiener-Milenkovt parameters 2).

Figure 7: Error in interpolated motion eld versus number of elemerst for interpolation scheme (33);
constant strain distribution. Cartesian rotation vector (+), Euler-Rodrigues parameters (), Cayley-
Rodrigues parameters?), Wiener-Milenkovt parameters (2).

interpolation strategy.

The additional term depends on the spatially dependent relative rations, potentially leading
to higher-order polynomial contributions. Because the relative tation vanishes at the nodes,
i.e. ()= _() =0, this additional term vanishes at the nodes, leaving the contributio of the
classical interpolation only: this additional contribution involves \bubble modes" that vanish at the
nodes. Using arguments similar to those in the previous section, itrc@e shown that interpolation
scheme (47) is objective and able to represent constant strairattés exactly.

To further illustrate the features of the interpolation scheme, awsider a two-node beam element
undergoing small rotations. The rotation tensors at node 0 and IS, = L+ and S, =

| + 7, respectively, and the interpolated rotation eld becomess( ) = L+ (), where ()=
@ ) o=2+(1+ ) 1=2. The small relative rotations are now ,( ) = (1 + )(_0 _1):2 and
() =( 1)(_, _,)=2 and the interpolated position eld becomes

L SV & S
2 0 2 72 4
where X, is the position of nodei in the reference con guration. As expected, the last term is
a quadratic bubble mode and describes a three-dimensional contiiion to the interpolation: it
vanishes for a straight beam_(l = 7 (Xo1  Xgo), for some 2 R) and is orthogonal to line
Xo1 Xgo JOining the two nodes of the element in the reference con guration

Interpolation scheme (48) can be easily implemented in existing lineanite element codes.
Sonneville and Brls [42] have shown that this interpolation schemen conjunction with a full
Gaussian integration strategy, yields the same sti ness matrix fahe beam element as the classical

X( )=

(X1 Xo0) , ¢ (48)
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interpolation scheme, using the rst two terms of eq. (48) only, in @njunction with a reduced
integration strategy. Because the latter strategy is known to alléate shear locking, it appears
that interpolation scheme (48) achieves the same goal without mting to the numerical artifact

of reduced integration.

3.6 Interpolation of the deformed con guration or change in con gu-
ration

In the isoparametric nite element formulation, the same interpolaibn scheme is used for the
reference and deformed con gurations, or equivalently, for theeference con guration and the dis-
placement eld, namely the change of con guration. The equivalercof these two approaches stems
from the fact that the interpolation scheme is applied to linear spase When dealing with the rota-
tion and motion spaces, application of the same interpolation scherteethe deformed con guration
or to the change of con guration yields di erent results.

When interpolation scheme (29) was introduced, it was applied to théeformed con guration,
i.e. S( )= R( )50( ). Consider the same scheme but now applied to the change of coargtion
from the reference to the deformed con gurationi.e., applied to rotation tensor R( ) rather than
to rotation tensor S( ), -

N X h . i
fi( )p, R'()R, =0 (49)
i=0
Because it depends on relative rotations only, the scheme is objeet The exact solution of rotation
eld R( ) for constant curvature states is obtained from eq. (36) aB( ) = S(0) exp( k)gg( )

and at the nodes@i = S(0) exp( ik)QiTO. Introducing these results into eq. (49) yields

X h [
fi()p, Ry( Jexpl( i RIRY =0 (50)

i=0

An analysis of the convergence rate for constant curvature $&s similar to that presented in
section 3.3.5 can be performed and leads to the following conclusion$.the beam is initially
straight, i.e. k, = 0, the discussion is identical to section 3.3.5. In this case, the initial tagion
eld 50( ) = R 8i is simply a rigid rotation of the interpolated eld. However, if the beam
is initially curved, the initial nodal rotations di er from each other and a ect the interpolated
rotation eld. The analysis shows that interpolation scheme (49) des not enjoy the superior order
of convergence for the constant curvature state. Furtherme, for arbitrary con gurations, it leads
to a higher error than scheme (29) that interpolates deformed o@urations.

Regarding the motion, when interpolation scheme (33) is applied to ¢hchange of motion from
the reference to the deformed con gurationi.e., to motion tensorH( ) = G( )gol( ), the follow-
ing scheme results

X h [
fi()p, H "(OH, =0 (51)
i=0
Because the scheme is based on relative motions only, it is objectiVdne exact solution of the mo-
tion eld H( ) for constant strain states is obtained from eq. (42) asl( ) = G(0) exp( E)gol( )

and at the nodes,ii = G(0) exp( il’:‘)giol. Introducing these results into eq. (51) yields
X h i
fi()p, Gyl Jexpl( i )EIG =0: (52)

i=0
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An analysis of the convergence rate for constant strain statesrslar to that presented in sec-
tion 3.3.7 can be performed and shows that interpolation scheme J5does not enjoy the superior
order of convergence for constant strain states and leads to aler error than scheme (33) that
interpolates deformed con gurations.

In summary, due to the nonlinearity of the interpolation methods forotation and motion, inter-
polation of the deformed con guration and of the change of congration are not equivalent, even
for isoparametric nite elements. The interpolation schemes basezh the deformed con guration
feature convergence rate and accuracy superior to those adbtd when the identical interpolation
scheme is applied to the change of con guration.

4 Conclusions

This paper has focused on the interpolation of the kinematic elds deribing the con guration of
geometrically exact beams. Two approaches were investigated:etblassical approach that treats
the displacement and rotation elds separately and the motion appach that treats those two elds
as a unit. The latter approach is found to be consistent with the kirmaatic description of beams
because it couples the position and rotation elds naturally. Furthemore, the motion approach
handles the superposition of rigid-body modes easily, leading natilyato objective sectional strain
measures.

Two nite element interpolation strategies were presented and ctnasted. The rst interpolates
the displacement and rotation elds separately, whereas the sewb interpolates both elds as a
unit, in a manner consistent with the motion approach. The performnce of the two approaches
was evaluated in light of the fundamental requirements for the ceargence of the nite element
method: the ability to represent rigid-body motion and constant stin states. It was shown that
the traditional uncoupled interpolation scheme for the position eldapproximates that based on
the motion by neglecting the e ect of the rotation eld on the position eld. Furthermore, it was
shown that the coupling induced by the interpolation of motion yieldsugerior convergence rates
for the representation of constant strain states. This propeytis known to lead to nite elements
that are less prone to the shear locking phenomenon.

To emphasize the fact that these issues stem from the kinematigresentation, this paper was
devoted entirely to interpolation techniques for position and rotabn elds. In turns, interpolation
schemes determine the interpolated strain measures, elastic #8cand tangent sti ness matrix of
the nite element. Future work will present a quantitative study of the behavior of geometrically
exact beam nite elements based on the motion approach. The suje properties of the inter-
polation schemes presented in this paper are expected to tranglanto high-performance beam
elements.

A Parametrization of rotation and motion

This appendix brie y reviews key aspects of the parametrization afotation and motion; a com-
prehensive review of the topic can be found in textbooks such a®i@din and Cardona [43] or
Bauchau [31]. A vectorial parametrizationp of a rotation is a vector of three independent rotation
parameters, denotedp, such that the rotation tensor, R, can be expressed as

R=R (M0 p=p,R) (53)

and the inverse operation extracts the rotation parameter vecot from a given rotation tensor.
Stuelpnagel [36] has shown that singularities will appear for any psle choice of the parametriza-
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tion. The tangent operator,lp(g), is de ned by the following relationship,
d =T (pd(p) (54)

whered™ = ET dR de nes the di erential rotation vector.
Similarly, a parametrization of a motion consists in a choice of six indepagent parameters,P,
such that the motion tensor can be expressed as

H=H®)( P=P(H) (55)

and the inverse operation extracts the motion parameter vectdrom a given motion tensor.
For sake of illustration, the Cartesian rotation and motion vector prametrizations are given
explicitly. As proposed in [44], the following notations are introduced

_sin(kpk) _ 1 coskpk)
= kpk ; (p=2 T (56)
wherep 2 R3. Note that (0) = (0) = 1. The rotation tensor is obtained from the rotation

parameters through a matrix exponential of skew-symmetric metes, which has a compact form
given by Rodrigues' formula,

R = g + + P 57
R=R,@=exp(p= =l + P+ 5P (57)
i=
and the inverse map, giving the Cartesian rotation vectop, writes
b3 (R L)
pP=p,,(R= ()P —=——"=_-—(R R); (58)
—exp = - I 2sin = =
withcos =(tr(R) 1)=2,jj< .IfR= | =0 and p=0, ,
The related tangent operator is given by
R P ®_ .1 (@
— i — Lt 2.

The Cartesian motion vector parametrization is characterized by

_ _ _X P _R® T (U
H=H, @) =epP)= = "0 mon ™ (60)

whereP = fu'; p"gand the inverse map reads

b3 o (H ! T
P— = P (ﬂ) - ( 1)I+1 (: ‘:4 4) — |3 —exp(p)x : (61)
i=1
where p= Eexp(g) and the 6 dimensional Cartesian motion vector is introduced as
n T #
p= —exp;p)— (62)
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B Numerical solution of the implicit interpolation formula
for the rotation eld

In this section, a simple Newton-Raphson procedure is given for saly numerically the implicit
interpolation formula in eq. (29). The solution is obtained as an interplated rotation eld S( ) at
a given

1. Initialize S( ) = S,
2. Compute the relative rotationsEi( ) = 9[§T( )gi].

P
3. Evaluate the interpolation formular = iN:O fi( )Ei( ).
4. Checkkrk

if krk < tolerance: stop.
if kﬂﬁq tolerance: ciorrect S() as S( ) = S( )R[] where
P 1 N — -
= Yo FiC T p( )] randgo to step 2.
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